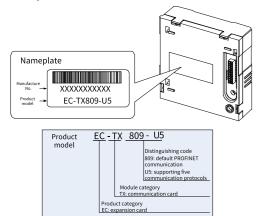
EC-TX809-U5 Industrial Ethernet Communication Module User Manual

Preface

Thank you for choosing INVT EC-TX809-U5 industrial Ethernet communication module.

The EC-TX809-U5 is an industrial Ethernet communication module that supports multiple protocols and is designed to be integrated into GD880 series VFD control box, enabling communication with Ethernet master stations across various protocols.


This manual provides the product overview, installation, wiring, and commissioning instructions. To ensure safe and proper use of the product and to maximize its performance, please carefully read the manual before installation.

Product features

- Supports protocol selection through function codes.
- Supports up to five protocols, including PROFINET I/O, EtherCAT, EtherNet IP, Modbus TCP, and PowerLink communication protocols.
- Equipped with two RJ45 ports.
- Reaches the communication rate of up to 100 Mbit/s, with a short communication
- Supports both linear and star network topologies, with certain protocols also accommodating ring network topology.

1 Product overview

1.1 Product nameplate and model

1.2 Specifications

2 Specifications		
Parameter	Specifications	
Working	-10-+50°C	
temperature	-10-130 C	
Storage	-20-+60°C	
temperature	-20-100 C	
Relative humidity	5%–95% (No condensation)	
Running	No corrosive gas	
environment	No corrosive gas	
Mounting	Fixed with snap-fits and screws	
method	rixed with shap-lits and screws	
Ingress		
protection (IP)	IP20	
rating		
	IP20	

Parameter	Specifications
Cooling method	Natural air cooling
Communication rate	100M bit/s
	Supports both linear and star network topologies, with certain protocols also accommodating ring network topology.

EC-TX809-U5 Industrial Ethernet Communication Module

1.3 Structure

INVI 深圳市英原機由气服份有限公司 SHENZHEN INVI ELECTRIC CO., LTO.

Figure 1-1 Product components

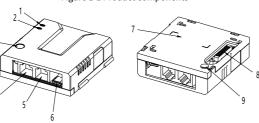


Table 1-1 Product component description

No.	Name	Description
1	STATUS bus status indicator (green)	For details about each protocol, see 1.4 Indicator.
2	FAULT fault indicator (Red)	For details about each protocol, see 1.4 Indicator.
3	Installation fixing hole	Helps to secure the communication module and ensure a good PE layer connection.
4	X1 communication network port	Communication interface 1 (IN).
5	X2 communication network port	Communication interface 2 (OUT).
6	Programming configuration port	Connects to the host controller through USB Type-C.
7	Nameplate	Contains communication module model and serial number information.
8	Connection port	For electrical connection with the control box.
9	Positioning hole	Helps to align the communication module and control box for easy installation.

1.4 Indicator

Table 1-2 PROFINET communication indicators

Table 1-2 PROFINET communication indicators				
Indicator	Color	Definition	Function	
	Green	Steady on	Communication established successfully, with normal IO data exchange.	
		Blinking (on for 500ms, off for 500ms)	Communication established successfully, but without valid IO data exchange.	
LED1(STATUS) G		Blinking (on for 100ms, off for 100ms)	In the communication configuration phase. For example, when DCP configuration commands are triggered, it will blink simultaneously with the FAULT indicator.	
		Steady off	The communication between the communication card and PLC is not in Online state.	
LED2(FAULT)	Red	Steady off	No fault	
		Blinking (on for 100ms, off for 100ms)	Communication establishment is abnormal.	

Table 1-3 EtherCAT communication indicators

Indicator	Color	Definition	Function	
		Steady off	In Init state.	
		Blinking		
		(on for 200ms, off for	In PreOP state.	
LED1(STATUS)	Green	200ms)		
		Single flash	In SafeOP state.	
		(on for 200ms, off for 1s)	III SaleOF State.	
		Steady on	In OP state.	
	Red	Steady off	No fault	
		Blinking		
		(on for 200ms, off for	The Init/PreOP fault occurred.	
LED2(FAULT)		200ms)		
		Single flash	The SafeOP fault occurred.	
		(on for 200ms, off for 1s)		
		Steady on	The OP fault occurred.	

Table 1-4 PowerLink communication indicators

Indicator	Color	Definition	Function
LED1(STATUS)	Green	Steady off	In Init state.
		Blinking (on for 50ms, off for 50ms)	In NMT_CS_BASIC_ETHERNET state.
		Single flash (on for 500ms, off for 500ms)	In NMT_CS_PRE_OPERATIONAL_1 state.

Indicator	Color	Definition	Function
		Double flashes (on for 250ms, off for 250ms)	In NMT_CS_PRE_OPERATIONAL_2 state.
		Triple flashes	In NMT_CS_READY_TO_OPERATE state
		Steady on	In NMT_CS_OPERATIONAL state
		Blinking (on for 200ms, off for 200ms)	In NMT_CS_STOPPED state
		Steady off	No fault
LED2(FAULT)	Red	Steady on	Data frame lost, communication disconnected, or NMT internal critical error (such as illegal interruption and memory overrun).

Table 1-5 EtherNet IP communication indicators

Indicator	Color	Definition	Function
		Steady on	The communication between the communication card and the PLC is online, and data exchange is allowed.
		Blinking	Abnormal setting of the IP address for
LED1(STATUS)	Green	(on for 500ms, off for 500ms)	either the communication card or the PLC.
		Steady off	The communication between the communication card and PLC is not in Online state.
	Red	Steady off	No fault
LED2(FAULT)		Blinking (on for 500ms, off for 500ms)	Incorrect PLC configuration.
		Blinking (on for 250ms, off for 250ms)	The communication card failed to send data to the PLC.
		Blinking (on for 125ms, off for 125ms)	The connection between the communication card and PLC timed out.
		Steady on	Failed to set up data communication between the communication card and PLC.

Table 1-6 Modbus TCP communication indicators

Indicator Color		Definition	Function
	Green	Steady on	The communication between the communication card and the PLC is online, and data exchange is allowed.
LED1(STATUS)		Blinking (on for 500ms, off for 500ms)	Abnormal setting of the IP address for either the communication card or the PLC.
		Steady off	The communication between the communication card and PLC is not in Online state.
LED2(FAULT)	Red :	Steady on	The communication card and PLC are in Offline state.
		Blinking (on for 500ms, off for 500ms)	Unsupported CMD control word command or PR function code value.
		Blinking (on for 62.5ms, off for 62.5ms)	Non-existent node address.
		Steady off	The connection between the communication card and PLC is normal.

1.5 Communication protocol selection

Table 1-7 Communication protocol selection

Table 1-7 Communication protocol selection				
Function code	Communication protocol	Default		
P7.83-P7.91	PROFINET	Factory setting (0)		
	EtherCAT	1		
	PowerLink	2		
	EtherNet IP	3		
	Modbus TCP	4		

1.6 Protocol parameter

Table 1-8 Protocol parameter description

code	Communication protocol	Description
P7.83- P7.91	PROFINET	 Supports the PROFINET protocol, accommodating PROFINET IO devices, medium redundancy protocol (MRP), and system redundancy protocol (S2). Equipped with the slave station GSDML configuration file, it can communicate with Siemens PLC and other master stations. Enables basic operations on VFDs, such as reading and writing process values, reading status values, and reading/writing function codes. This

SHENZHEN INVIETECTRIC CO., LTD.		EC-1X809-05 industrial Ethernet Communication Module
Function code	Communication protocol	Description
		 communication card supports up to 32 IOs. Applicable to linear, star, and ring network topologies.
	EtherCAT	 Configured with a slave XML configuration file, communication between the master stations (such as Beckhoff PLCs and INVT controllers) and the VFD can be established. It supports up to 32 bytes of I/O data exchange but does not support CiA301 or CiA402 EoE protocols. Supports PDO services and manufacturer-defined object dictionaries, meeting the EtherCAT compliance testing certification requirements within the factory. Applicable to linear, star, and ring network topologies. Equipped with two RJ45 ports, designated for IN and OUT directions.
	PowerLink	 Configured with a slave station XDD configuration file, communication between master stations (such as B&R PLCs) and the VFD can be established. The CiA401 protocol is not supported. Supports PDO services and manufacturer-defined object dictionaries for communication with the VFD Applicable to linear and star network topologies.
	EtherNet IP	 Supports ODVA standards and DLR ring protocol. When configured with a slave station EDS configuration file, it can communicate with Rockwell PLC and other master stations. Enables basic operations on VFDs, such as reading and writing process values, reading status values, and reading/writing function codes. This communication card supports up to 32 IOs. Applicable to linear, star, and ring network topologies.
	Modbus TCP	 Supports the Modbus TCP protocol. A Modbus TCP slave station can communicate with multiple master stations simultaneously. It can communicate with Schneider PLC, INVT controllers, and other master stations. Enables basic operations on VFDs, such as reading and writing process values, reading status values, and reading/writing function codes. Applicable to linear and star network topologies.

∠Note: After each change to P7.8–P7.91, the expansion card will automatically reset and complete the protocol switchover. It will take some time to re-establish communication with the PLC using the new protocol. If a communication timeout fault occurs on the VFD during this period, you can clear it by pressing the reset key on the keypad.

2 Installation and wiring

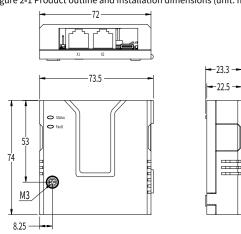
2.1 Installation precautions

\triangle	Make sure the device have been powered off before installation.					
Note	 There are three expansion card interfaces (slot 1, slot 2, and slot 3) on the control box. You can use any of these slots based on the actual wiring requirements. The EC-TX809-U5 industrial Ethernet communication module is recommended to be installed in slot 3. 					

Tools required for installation: Phillips screwdriver PH1; slotted screwdriver SL3.

Table 2-1 Screw torque requirements

rable 2 1 ocien torqu	e requirements
Screw requirements	Fastening torque
M3	0.55 N • m

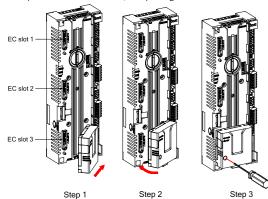

■ 深圳市英威騰电气股份有限公司

2.2 Dimensions

EC-TX809-U5 dimensions are 73.5×74×23.3mm (W×H×D). See Figure 2-1.

Figure 2-1 Product outline and installation dimensions (unit: mm)

EC-TX809-U5 Industrial Ethernet Communication Module


2.3 Installation instructions

EC-TX809-U5 is recommended to be installed in slot 3 of the control box. The following describes the installation procedure using slot 3 as an example.

Step 1 Position the communication module in the designated area of slot 3 on the control box, ensuring proper alignment with the slot before securely fastening it together.

Step 2 Guide the communication module into place using the positioning stud.

Step 3 Secure it in position with M3 screws, completing the installation.

Note:

- The communication module and control box are electrically connected through a slot. Please install them in place.
- To ensure the reliable operation of the communication module and EMC requirements. are met, please tighten the screws according to the recommended torque for reliable grounding.

2.4 Disassembly instructions

You can disassembly the product by reversing the order of steps described in section 2.3 Installation instructions

Step 1 Disconnect the power supply and disassemble all cables connected to the

Step 2 Use a Phillips screwdriver to remove the grounding screw of the module.

Step 3 Pull the expansion module out to a suitable position.

2.5 User's wiring terminals

Figure 2-2 Product terminal structure

Table 2-2 RJ45 terminal functions

X1–X2 terminals	Pin no.	Definition	Description
	1, 9	TX+	Transmit Data+
	2, 10	TX-	Transmit Data-
	3, 11	RX+	Receive Data+
16151413121L10.9 8 7 6 5 4 3 2 1	4, 12	n/c	Not connected
	5, 13	n/c	Not connected
	6, 14	RX-	Receive Data-
1 0000000 000000 00	7, 15	n/c	Not connected
	8, 16	n/c	Not connected

2.6 Wiring precautions

The communication card uses standard RJ45 interfaces, and its electrical connections are shown in Figure 2-3, Figure 2-4, and Figure 2-5.

✓ Note: It is recommended to use double-twisted shielded Category 5e Ethernet cables, with crystal heads equipped with iron shells to meet the grounding shield protection.

Figure 2-3 Linear network topology electrical connection

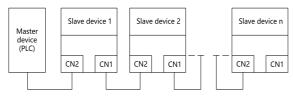
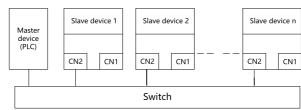
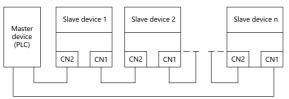




Figure 2-4 Star network topology electrical connection

✓ Note: For the star network topology, you need to prepare switches.

Figure 2-5 Ring network topology electrical connection

3 Commissioning

Figure 3-1 EC-TX809-U5 configuration flowchart

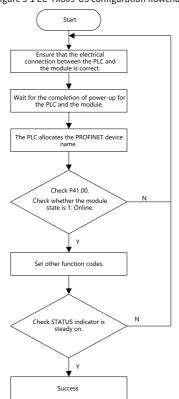


Table 3-1 EC-TX809-U5 related function code settings

8									
Function code	Name	Parameter description	Setting range	Default	Remarks				
P37.00	0	0: None 1: PROFIBUS-DP module 2: PROFINET IO module 3: CANopen module 4: EtherNet IP module 5: EtherCAT module 6: PowerLink module 7: 216 communication card module	0-7	1	-				

Function Setting Parameter description code range : Digital (0-65535, 0) Other-C connector 0.00-99.99, 20.34) Slave-to-P37.02-Sent PZD1-8: AI1 2 master data P37.13 PZD12 source : AI2 source : HDI1 : HDI2 : Multi-step running MOP ent PKW1–PKW4 data Sent PKW1-Slave-to-P37.62isplav 0x0000-PZD12 data master data Sent PZD1-PZD12 data P37.77 0xFFFF display display isplay Received PKW1-PKW4 ceived PKW1 Master-to-P37.78-0x0000data display PZD12 data slave data Received PZD1-PZD12 P37.93 0xFFFF display display data display : None : PROFIBUS-DP module : PROFINET IO module Matching bus : CANopen module P38.00 type of bus : EtherNet IP module 2 : EtherCAT module adapter : Powerl ink module 7: 216 communication ard module L: Digital (0-65535, 0) : Other-C connector 0.00-99.99, 20.34) Slave-to-P38.02-Sent PZD1-AI1 2 master data P38.13 PZD12 source 1: AI2 : HDI1 : HDI2 : Multi-step running Sent PKW1-PKW4 data Sent PKW1-Slave-to-P38.62isplay 0x0000 PZD12 data master data P38.77 Sent PZD1-PZD12 data display display display Received PKW1-PKW4 eceived PKW1-Master-to-P38.78data display 0x0000-PZD12 data x0000 slave data P38.93 Received PZD1-PZD12 0xFFFF display display data display Industrial Industrial Ethernet P42.14-Ethernet ommunication card IP Andbus TCF 0-255 P42.25 ddress, subnet mask, an EtherNet/IF card IP gateway Rit0-bit8 Module online P41.00 EC slot module online 0-1 0 PROFINET IO state state (0: Offline; 1: Online 3it0-bit8 Module online P45.03 C slot module online state state (0: Offline; 1: Online) EtherCAT herCAT statio P45.04 0-65535 lave station no. setting. 1 no. Rit0_bit8 Module online P45.06 C slot module online state tate (0: Offline; 1: Online) PowerLink PowerLink P45.08 lave station no. setting. 1-256 station no Select Module online P45.00 C slot module online 0 0-1 adapter A fo state state (0: Offline: 1: Online FtherNet/IF 3it0-bit8 Module online P42.11 C slot module online 0-1 state state (0: Offline; 1: Online Modbus TCP Local Modbus P42.00 Slave address 1-247 1

- When two identical expansion modules are inserted into a VFD simultaneously, only the module in the slot with a smaller number will be active, while the module in the slot with a larger number will be redundant. For example, if two PROFINET expansion modules are inserted into slot 1 and slot 2, the PROFINET module in slot 1 will be
- For additional parameter settings for EC-TX809-U5, see the GD880 series product

