

INVT Medium and Large-Scale PLC Programming Manual Preface

Preface

Overview

Thank you for choosing our medium and large-scale PLC.

This manual contains the information necessary for using the medium and large-scale PLC. Please read this

manual carefully before use to fully understand the functions and performance of the product, and

complete system construction, which helps to give full play to the product's superior performance.

This manual is applicable to AX, TM, and TP series PLCs, but attention should be paid to the applicable scope

of some function instructions.

Target Audience

This manual is intended for personnel with professional knowledge of electrical engineering (e.g., qualified

electricians or personnel with equivalent knowledge).

Online Support

In addition to this manual, you can also obtain product information and technical support from our website.

Website: https://www.invt.com

If the product is ultimately used for military affairs or weapons manufacturing, please comply with the

export control regulations in the Foreign Trade Law of the People's Republic of China, and complete related

export formalities if required.

Revision History

The Company reserves the right to continuously improve the product without prior notice.

Number Revision Description Version
Release

Date

1 First release. V1.0
September

2024

https://www.invt.com.cn/

INVT Medium and Large-Scale PLC Programming Manual Contents

202409 (V1.0) i

Contents

1 Program Structure and Execution .. 1

1.1 Program Structure .. 1

1.2 Task .. 1

1.3 Program Execution Process ... 2

1.4 Task Execution Type .. 5

1.5 Task Priority .. 6

1.6 Running of Multiple Subprograms ... 9

1.7 Single Axis Control ... 11

1.7.1 Programming Instructions for Single Axis Control ... 11

1.7.2 Commonly Used MC Function Blocks for Single Axis Control .. 11

1.8 Cam Synchronization Control ... 12

1.8.1 Cyclic Mode of the Cam Table .. 13

1.8.2 Input Method of the Cam Table .. 13

1.8.3 Data Structure of the Cam Table .. 14

1.8.4 Reference and Switching of Cam Tables .. 15

1.9 Programming Suggestions .. 15

2 EtherCAT Operation Mechanism .. 17

2.1 EtherCAT Operation Principle ... 17

2.1.1 Introduction to the EtherCAT Protocol .. 17

2.1.2 Working Counter (WKC) ... 17

2.1.3 Addressing Mode .. 18

2.1.4 Distributed Clock ... 22

2.2 EtherCAT Communication Mode .. 24

2.2.1 Cyclic Process Data Communication .. 25

2.2.2 Acyclic Mailbox Data Communication ... 27

2.3 EtherCAT State Machine .. 29

2.4 EtherCAT Servo Drive Control Application Protocol ... 30

2.4.1 EtherCAT-based CAN Application Protocol (CoE) .. 30

2.4.2 Servo Drive Profiles According to IEC 61800-7-204 (SERCOS) .. 34

3 Axis State Mechanism ... 39

3.1 Axis State Transition ... 39

4 Basics of Programming ... 40

4.1 Variable ... 40

4.1.1 Variable Declaration ... 40

4.1.2 Data Type ... 41

4.1.3 Variable Type.. 48

4.1.4 Persistent Variable .. 48

5 Programming Language .. 50

5.1 Overview ... 50

5.2 Structured Text (ST) ... 50

5.2.1 Introduction to the Structured Text Programming Language .. 50

5.2.2 Program Execution Sequence .. 51

5.2.3 Expression Execution Sequence .. 51

INVT Medium and Large-Scale PLC Programming Manual Contents

202409 (V1.0) ii

5.2.4 Instruction Statement .. 52

5.2.5 Application Examples ... 63

5.3 Ladder Diagram (LD) and Function Block (FBD） .. 68

5.3.1 Introduction to Ladder Diagram and Function Block Diagram Programming Languages 68

5.3.2 Program Execution Sequence .. 69

5.3.3 Execution Control ... 69

5.3.4 Link Element ... 70

5.3.5 Application Examples ... 81

5.4 Instruction List (IL) .. 84

5.4.1 Introduction to the Instruction List Programming Language .. 84

5.4.2 Link Element ... 86

5.4.3 Operation Instructions ... 89

5.4.4 Function and Function Block .. 95

5.4.5 Application Examples ... 97

5.5 Sequential Function Chart (SFC) .. 99

5.5.1 Introduction to the Sequential Function Chart Programming Language 100

5.5.2 SFC Structure ... 102

5.6 Continuous Function Chart (CFC) .. 115

5.6.1 Continuous Function Chart Programming Language Structure .. 115

5.6.2 Link Element ... 118

5.6.3 CFC Configuration .. 124

6 Basic Instructions .. 126

6.1 Comparison Instructions ... 126

6.1.1 Greater Than (GT) .. 126

6.1.2 Less Than (LT) ... 126

6.1.3 Greater Than Or Equal To (GE).. 126

6.1.4 Less Than Or Equal To (LE) ... 127

6.1.5 Equal To (EQ) ... 127

6.1.6 Not Equal To (NE) .. 127

6.2 Selection Instructions .. 128

6.2.1 Binary Selection (SEL) .. 128

6.2.2 Multiplexer (MUX) ... 128

6.2.3 Maximum (MAX) ... 128

6.2.4 Minimum (MIN) ... 128

6.2.5 Limit (LIMIT) ... 129

6.3 Counter Instructions .. 129

6.3.1 Counter Up (CTU) ... 129

6.3.2 Count Down (CTD) ... 130

6.3.3 Counter Up/Down (CTUD) .. 130

6.4 Timer Instructions ... 131

6.4.1 Pulse Timer (TP) ... 131

6.4.2 On-delay Timer (TON) .. 132

6.4.3 Off-delay Timer (TOF) .. 132

6.4.4 Real-time Clock (RTC) .. 133

6.5 Bit and Word Logic Instructions .. 134

6.5.1 AND Instruction ... 134

6.5.2 OR Instruction ... 134

INVT Medium and Large-Scale PLC Programming Manual Contents

202409 (V1.0) iii

6.5.3 NOT Instruction ... 134

6.5.4 XOR Instruction .. 134

6.5.5 Set Dominant (SR) .. 134

6.5.6 Reset Dominant (RS) .. 135

6.5.7 Rising Edge Detector (R_TRIG) ... 135

6.5.8 Falling Edge Detector (F_TRIG) ... 136

6.6 Bit/Byte Functions ... 136

6.6.1 EXTRACT ... 136

6.6.2 PACK .. 136

6.6.3 PUTBIT ... 136

6.6.4 UNPACK ... 137

6.7 Bit Shift Instructions .. 137

6.7.1 Bitwise Left-shift (SHL) ... 137

6.7.2 Bitwise Right-shift (SHR) .. 137

6.7.3 Bitwise Left-rotation (ROL) ... 137

6.7.4 Bitwise Right-rotation (ROR) .. 138

6.8 Data Type Conversion Instructions ... 138

6.8.1 BOOL_TO_<TYPE> ... 138

6.8.2 BYTE_TO_<TYPE> .. 138

6.8.3 WORD_TO_<TYPE> .. 138

6.8.4 DWORD_TO_<TYPE> ... 138

6.8.5 INT_TO_<TYPE> ... 139

6.8.6 SINT_TO_<TYPE> ... 139

6.8.7 DINT_TO_<TYPE> ... 139

6.8.8 UDINT_TO_<TYPE> .. 139

6.8.9 REAL_TO_<TYPE> .. 139

6.8.10 STRING_TO_<TYPE> .. 139

6.8.11 TIME_TO_<TYPE> ... 140

6.8.12 TOD_TO_<TYPE> .. 140

6.8.13 DATE_TO_<TYPE> .. 140

6.8.14 DT_TO_<TYPE> .. 140

6.9 Data Processing Instructions .. 140

6.9.1 MOVE ... 140

6.9.2 HEXinASCII_TO_BYTE .. 140

6.9.3 BYTE_TO_HEXinASCII .. 141

6.9.4 WORD_AS_STRING .. 141

6.10 Arithmetic Instructions ... 141

6.10.1 ADD .. 141

6.10.2 SUB .. 141

6.10.3 MUL .. 141

6.10.4 DIV .. 142

6.10.5 MOD ... 142

6.10.6 ABS .. 142

6.10.7 SQRT .. 142

6.10.8 LN ... 143

6.10.9 LOG .. 143

6.10.10 EXP .. 143

INVT Medium and Large-Scale PLC Programming Manual Contents

202409 (V1.0) iv

6.10.11 EXPT .. 143

6.10.12 SIN .. 143

6.10.13 COS .. 144

6.10.14 TAN .. 144

6.10.15 ASIN ... 144

6.10.16 ACOS ... 144

6.10.17 ATAN .. 144

6.10.18 RAD/DEG ... 145

6.10.19 SIZEOF ... 145

6.11 Date and Time Instructions ... 145

6.11.1 SetDateAndTime .. 145

6.11.2 GetDateAndTime .. 145

6.12 String Function Instructions .. 146

6.12.1 LEN ... 146

6.12.2 LEFT ... 146

6.12.3 RIGHT .. 146

6.12.4 MID ... 146

6.12.5 CONCAT .. 147

6.12.6 INSERT .. 147

6.12.7 DELETE .. 147

6.12.8 REPLACE ... 148

6.12.9 FIND ... 148

6.13 Address Operation Instructions ... 148

6.13.1 ADR/^ ... 148

6.13.2 BITADR .. 149

6.14 File Operation Instructions .. 149

6.14.1 Overview ... 149

6.14.2 Input and Output ... 149

6.14.3 Load Files (files_load) ... 149

6.14.4 Copy Files (Files_Copy) ... 150

6.14.5 Delete Files (Delete_File) ... 150

6.14.6 Write Files (Write_File) ... 150

6.15 Regulators .. 154

6.15.1 PD ... 154

6.15.2 PID .. 155

6.15.3 PID_FIXCYCLE .. 156

6.16 BCD Conversion Instructions .. 156

6.16.1 BCD_TO_INT ... 156

6.16.2 INT_TO_BCD ... 156

6.17 System Instructions... 157

6.17.1 PLC Fault Diagnosis Instructions .. 157

6.17.2 IP and Time Instructions of the TM Controller .. 158

6.17.3 IP and Time Instructions of the TP Controller ... 158

6.18 Signal Generator ... 159

6.18.1 BLINK ... 159

6.18.2 FREQ_MEASURE .. 159

6.18.3 GEN .. 160

INVT Medium and Large-Scale PLC Programming Manual Contents

202409 (V1.0) v

6.19 Auxiliary Mathematical Function Blocks .. 162

6.19.1 DERIVATIVE .. 162

6.19.2 INTEGRAL .. 162

6.19.3 LIN_TRAFO .. 163

6.19.4 STATISTICS_INT ... 163

6.19.5 STATISTICS_REAL .. 164

6.19.6 VARIANCE ... 164

6.20 Operation Function Blocks .. 164

6.20.1 CHARCURVE ... 164

6.20.2 RAMP_INT ... 165

6.20.3 RAMP_REAL .. 165

6.21 Analog Value Processing .. 166

6.21.1 HYSTERESIS ... 166

6.21.2 LIMITALARM .. 166

7 Motion Control Instructions ... 167

7.1 Single Axis Instructions ... 167

7.1.1 MC_Power .. 167

7.1.2 MC_Halt .. 168

7.1.3 MC_Home .. 169

7.1.4 MC_MoveAbsolute ... 171

7.1.5 MC_AccelerationProfile .. 173

7.1.6 MC_MoveAdditive ... 175

7.1.7 MC_MoveRelative .. 178

7.1.8 MC_MoveSuperImposed .. 180

7.1.9 MC_MoveVelocity ... 183

7.1.10 MC_PositionProfile ... 185

7.1.11 MC_ReadActualPosition ... 187

7.1.12 MC_ReadBoolParameter .. 188

7.1.13 MC_ReadAxisError ... 189

7.1.14 MC_ReadStatus ... 190

7.1.15 MC_ReadParameter ... 192

7.1.16 MC_Reset ... 193

7.1.17 MC_Stop ... 194

7.1.18 MC_VelocityProfile ... 196

7.1.19 MC_WriteBoolParameter .. 198

7.1.20 MC_WriteParameter ... 200

7.1.21 MC_AbortTrigger .. 201

7.1.22 MC_ReadActualTorque .. 202

7.1.23 MC_ReadActualVelocity ... 204

7.1.24 MC_SetPosition .. 205

7.1.25 MC_TouchProbe ... 206

7.1.26 MC_MoveContinuousAbsolute ... 208

7.1.27 MC_MoveContinuousRelative .. 210

7.1.28 MC_Jog .. 212

7.1.29 MC_Inch ... 214

7.1.30 SMC3_PersistPosition .. 216

7.1.31 SMC3_PersistPositionSingleturn .. 218

INVT Medium and Large-Scale PLC Programming Manual Contents

202409 (V1.0) vi

7.1.32 SMC3_PersistPositionLogical ... 220

7.1.33 SMC_Homing ... 221

7.1.34 SMC_SetControllerMode .. 226

7.1.35 SMC_SetTorque ... 228

7.2 Master-slave Axis Instructions .. 229

7.2.1 MC_CamIn ... 229

7.2.2 MC_Camout ... 236

7.2.3 MC_CamTableSelect .. 238

7.2.4 MC_GearIn ... 239

7.2.5 MC_GearOut .. 242

7.2.6 MC_GearInPos ... 243

7.2.7 MC_Phasing ... 247

8 Communication Instructions.. 250

8.1 Serial Freeport Instructions ... 250

8.1.1 Instruction List .. 250

8.1.2 ICP_Serial_Comm_hCom .. 250

8.1.3 ICP_Serial_Comm_Read ... 251

8.1.4 ICP_Serial_Comm_Write .. 252

8.2 TCP Freeport Communication Instructions ... 254

8.2.1 Instruction List .. 254

8.2.2 ICP_TCP_Comm_Client ... 255

8.2.3 ICP_TCP_Comm_Write .. 256

8.2.4 ICP_TCP_Comm_Read ... 257

8.2.5 ICP_TCP_Comm_Server ... 258

8.2.6 ICP_TCP_Comm_Connect ... 259

8.3 UDP Freeport Communication Instructions ... 260

8.3.1 Instruction List .. 260

8.3.2 ICP_UDP_Comm_Send ... 260

8.3.3 ICP_UDP_Comm_Receive ... 261

9 Pulse Output Instructions .. 263

9.1 Auxiliary Instructions ... 263

9.1.1 IMC_GetSys_P ... 263

9.1.2 IMC_Axis_P .. 264

9.1.3 IMC_Power_P... 267

9.1.4 IMC_SetPosition_P ... 268

9.1.5 IMC_ReadCmdPosition_P .. 269

9.1.6 IMC_ReadParameter_P ... 269

9.1.7 IMC_ReadStatus_P .. 271

9.1.8 IMC_SendData_P ... 271

9.1.9 IMC_Acc2Jerk_P .. 272

9.1.10 IMC_AccTime2Jerk_P .. 273

9.2 Single Axis Instructions ... 274

9.2.1 IMC_Jog_P ... 274

9.2.2 IMC_Inch_P .. 275

9.2.3 IMC_MoveAbsolute_P .. 276

9.2.4 IMC_MoveRelative_P ... 277

9.2.5 IMC_MoveVelocity_P ... 278

INVT Medium and Large-Scale PLC Programming Manual Contents

202409 (V1.0) vii

9.2.6 IMC_Home_P ... 279

9.2.7 IMC_Halt_P .. 283

9.2.8 IMC_Stop_P ... 284

9.2.9 IMC_Reset_P ... 285

9.2.10 IMC_SetOverride_P .. 285

9.2.11 IMC_MoveSuperImposed_P ... 286

9.2.12 IMC_ReadCmdSpeed_P .. 287

10 Fault Codes .. 289

10.1 SMC_ERROR Fault Codes (General Error Information for 402 Axis) ... 289

10.2 PLC Error Code Table (for TM and TP series PLCs) .. 295

INVT Medium and Large-Scale PLC Programming Manual Program Structure and Execution

202409 (V1.0) 1

1 Program Structure and Execution

1.1 Program Structure

The software model is represented by a hierarchical structure and describes basic software elements and

their relationships, with each layer implying many characteristics of the layers below it. These software

elements include devices, applications, tasks, global variables, access paths, and application objects. Their

internal structure is shown in Figure 1-1. The software model is consistent with that specified in the IEC

61131-3 standard.

Figure 1-1 Program Hierarchy

Task 2

FB2

Program 1 Program 2

Application

Task 3

Program 3 Program 4

Application

Global and direct address variables

Access path

Communication function

Device

Task 1

FB1

Task 4

FB1 FB2

1.2 Task

A program can be written in different programming languages. A typical program consists of many

interconnected function blocks that can exchange data with each other. The execution of different parts of a

program is controlled by “tasks”. Once a “task” is configured, a series of programs or function blocks can be

executed periodically or triggered by a specific event.

The “Task Manager” tab in the device tree can be used to control the execution of other subprograms within

the project, in addition to the specific PLC_PRG program. A task is used to define the properties of a program

organization unit at runtime. It is an execution control element with the calling ability. Multiple tasks can be

created in a task configuration, and multiple program organization units can be called in a task. Once a task

is set up, it can control the program’s cyclic execution or start execution through a specific event trigger.

In the task configuration, a task is defined with a name, priority, and startup type. The startup type can be

defined by time (periodic, random) or by an internal or external trigger task time, for example, using a rising

edge of a Boolean global variable or a specific event in the system. For each task, you can set a series of

programs that are started by the task. If the task is executed in the current cycle, these programs will be

processed within the duration of one cycle. The combination of priority and conditions will determine the

task execution timing. The Task Configuration interface is shown in Figure 1-2.

INVT Medium and Large-Scale PLC Programming Manual Program Structure and Execution

202409 (V1.0) 2

Figure 1-2 Task Configuration Interface

Programmers must follow the following rules:

 The maximum number of cyclic tasks is 100, the maximum number of freewheeling tasks is 100, and the

maximum number of event-triggered tasks is 100.

 Depending on the target system, PLC_PRG may be executed in any case as a free program without

being manually inserted into the Task Configuration.

 Processing and calling programs are executed in a top-down sequence within the Task Editor.

1.3 Program Execution Process

The figure below describes in detail the complete process of executing a program inside the PLC, which

mainly consists of three parts: input sampling, program execution, and output refreshing.

Figure 1-3 Controller Execution Process

Read input

Image register

Image register

Write output

1. Input
sampling

2. Program
execution

3. Output
refresh

Task 1

Task 2

 Input sampling

At the beginning of each scan cycle, the PLC detects the status of the input device (switches, buttons, etc.)

and writes the status into the input image register. During the program execution stage, the operating

system reads data from the input image register to solve the program. It is important to note that input

refreshing only occurs at the beginning of the scan cycle. During the scan, even if the output state changes,

the input state will not change.

 Program execution

During the program execution stage of the scan cycle, the PLC reads the status and data from the input

INVT Medium and Large-Scale PLC Programming Manual Program Structure and Execution

202409 (V1.0) 3

image register or the output image register, and performs logical and arithmetic operations according to the

instructions. The results of the operations are stored in the corresponding cells in the output image register.

During this stage, only the content in the input image register remains unchanged, while the content in

other image registers will change with the program execution.

 Output refreshing

The output refreshing stage can also be called the write output stage. The PLC transmits the status and data

from the output image register to the output point, and drives an external load through certain isolation and

power amplification. In addition to completing the tasks of the above three stages in one scan cycle, the PLC

also has to complete auxiliary tasks such as internal diagnosis, communication, public processing, and

input/output services.

The PLC repeats the above process, and the time for each repetition is a work cycle (or scan cycle). It can be

seen from the scanning method of the PLC that in order to quickly respond to changes in input and output

data and complete control tasks, the scanning time is short and the controller’s work cycle is generally

controlled at the ms level. Therefore, it is necessary to develop a stable, reliable, and fast-response real-time

system for the PLC operating system.

Since the PLC employs a cyclic work mode, the input signal is only refreshed at the beginning of each cycle

and the output is output in a concentrated manner at the end of each work cycle, which inevitably causing a

lag between the output signal and the input signal. When a signal is input from the input end and

transmitted to the output end of the PLC, it takes some time to respond to the change of the input signal.

The lag time is an important parameter that should be understood when a PLC control system is designed.

Generally, the length of the lag time is related to the following factors.

1. Filtering time of the input circuit, which is determined by the time constant of the hardware RC filter

circuit. The input lag time can be adjusted by changing the time constant.

Table 1-1 lists the technical parameters of the AX-EM-1600D digital input module, where the “Port filtering

time” indicates the filtering time of the input module.

Table 1-1 Technical Parameters of the AX-EM-1600D Digital Input Module

Item Specification

Input channel 16

Input connection method 18-pin terminal block

Input voltage class 24 V (up to 30 V)

Input current (typical) 4.7 mA

ON voltage ＞ 15 VDC

OFF voltage ＜ 5 VDC

Port filtering time 10 ms

Input resistance 5.4 kΩ

Input signal type VDC input

Isolation method Opto-coupler

Input dynamic display The indicator is on when the input is valid.

2. Lag time of the output circuit, which is related to the mode of the output circuit. The lag time of the relay

output mode is generally about 10 ms, while that of the transistor output mode is less than 1 ms.

3. Cyclic scan mode of the controller.

4. Arrangement of statements in the user program.

To allow readers to better understand the whole process, a simple ladder diagram program example is given

below to show its input and output and how the lag is produced. The program logic is shown in Figure 1-4.

INVT Medium and Large-Scale PLC Programming Manual Program Structure and Execution

202409 (V1.0) 4

Figure 1-4 TM-series PLC Program

bInput has a hardware mapping relationship with an external input button, and when the button is pressed,

bInput is ON. Meanwhile, bOutput has a hardware mapping relationship with the coil of an external relay,

and when bOutput is ON, the coil is also energized. The relationship processed inside the PLC is shown in

Figure 1-6. When the input button is pressed, bInput will not be set to ON immediately, because input

sampling can only be executed by the program at the beginning of a work cycle. Since the button signal has

passed the sampling stage, it will usually be executed at the beginning of the next work cycle. In the

program shown in Figure 1-6, the state of bInput is assigned to bOutput. Since there are certain program

operations during program running, it takes a certain amount of program processing time for bOutput to be

set to ON. Since output refreshing occurs at the last stage of program processing, bOutput passes its value

to actual hardware through the output refreshing function at the last stage of the cycle, and finally the coil

can be energized. Figure 1-5 shows a relatively ideal state, in which the final output is only lagged by one

cycle.

Figure 1-5 Fastest Output

While Figure 1-5 shows a relatively ideal state, we also need to consider a worse situation. When the input

sampling of a cycle has just ended, the external input button is ON, Since the input signal can only be loaded

into the input image register at the beginning of the next cycle, and the actual output can only be loaded

into the output image register at the end of the next cycle, the whole process is shown in Figure 1-6. In this

case, the output is lagged by about 2 cycles, which is the slowest output.

Figure 1-6 Slowest Output

INVT Medium and Large-Scale PLC Programming Manual Program Structure and Execution

202409 (V1.0) 5

1.4 Task Execution Type

There is an entry named “Task Configuration” at the very top of the task configuration tree, which includes

the currently defined tasks, each represented by a task name. The call of POUs for specific tasks is not

displayed in the task configuration tree. The execution type of each individual task can be edited and

configured, including 4 types: Cyclic, Event, Freewheeling, and Status.

Figure 1-7Task Execution Types

1. Cyclic

The program processing time will vary depending on whether the instructions used in the program are

executed or not, so the actual execution time varies in each scan cycle and may be longer or shorter. By

using the Cyclic type, the program can be repeatedly executed while maintaining a certain cycle time. Even if

the program execution time changes, a certain refresh interval can be maintained. Here, we recommend

that you give priority to the Cyclic type. For example, if you set the corresponding task to the Cyclic type and

the interval to 10 ms, the actual program execution timing is shown in Figure 1-8.

Figure 1-8 Cyclic Execution Timing

END END END END

8ms

10ms 10ms 10ms 10ms

2ms 6ms 4ms 7ms 3ms 8ms

Cyclic setting time

Actual program

execution time

Waiting time

If the program is actually completed within the specified Cyclic setting time, the remaining time is used for

waiting. If there are still lower-priority tasks in the application that have not been executed, the remaining

waiting time is used to execute the these lower-priority tasks. The priority of tasks will be explained in detail

later.

2. Freewheeling

The task will be processed as soon as the program starts running, and will be automatically restarted in the

next cycle after one running cycle ends. This execution type is not affected by the program scan cycle. That

is, it ensures that the next cycle starts only after the last instruction of the program is executed, otherwise

the current cycle will not end. Figure 1-9 shows the freewheeling execution timing.

Figure 1-9 Freewheeling Execution Timing

END

8ms 6ms 7ms 3ms 8ms

Actual program

execution time

7ms

END;0END;0END;0END;0END;0

Since there is no fixed task time for the freewheeling execution type, the execution time may be different

each time. Therefore, the real-time performance of the program cannot be guaranteed, and this type is

rarely used in actual applications.

INVT Medium and Large-Scale PLC Programming Manual Program Structure and Execution

202409 (V1.0) 6

3. Event

If the variable in the event area receives a rising edge, the task starts.

4. Status

If the variable in the event area is TRUE, the task starts. The Status type is similar to the Event type except

that the program will be executed as long as the trigger variable is TRUE, and will not be executed if it is

FALSE. The Event type only collects the valid signal of the rising edge of the trigger variable. Figure 1-10

compares the Event type and the Status type. The green solid line represents the Boolean variable state

selected by the two trigger types. The comparison results are listed in Table 1-2.

Figure 1-10 Task Input Trigger Signal

Different types of tasks at sampling points 1-4 (purple) show different responses. The trigger condition of the

Status type is fulfilled when a specific event is TRUE, but an event-triggered task requires the event to

change from FALSE to TRUE. If the task is scheduled to sample too slowly, the rising edge of the event may

not be detected.

Table 1-2 Comparison of Event-triggered and Status-triggered Execution Results

Execution Point 1 2 3 4

Event Not executed Executed Executed Executed

Status Not executed Executed Not executed Not executed

1.5 Task Priority

1. Task priority setting

You can set the priority of a task, with a total of 32 levels (a number between 0 and 31, with 0 representing

the highest priority and 31 representing the lowest priority). When a program is being executed, high-priority

tasks take precedence over low-priority tasks. A task with the highest priority 0 can interrupt the execution

of lower-priority programs in the same resource, causing the execution of the lower-priority programs to be

slowed down.

Note: When assigning task priority levels, do not assign tasks with the same priority. If there are other

tasks that precede the task with the same priority, the results may be uncertain and unpredictable.

If the task execution type is “Cyclic”, the task will be executed cyclically according to the “interval”. The

specific settings are shown in Figure 1-11.

Figure 1-11 Cyclic Configuration

Example: Assuming there are 3 different tasks, corresponding to three different priority levels, the specific

allocation is as follows.

: Task 1 has a priority level of 0 and a cycle time of 10 ms.

: Task 2 has a priority level of 1 and a cycle time of 30 ms.

: Task 3 has a priority level of 2 and a cycle time of 40 ms.

The timing relationship of each task inside the controller is shown in Figure 1-12, and explained as follows:

0-10 ms: Task 1 (with the highest priority) is executed first, and if the program is finished within the current

INVT Medium and Large-Scale PLC Programming Manual Program Structure and Execution

202409 (V1.0) 7

cycle, the remaining time will be used to execute Task 2. However, if Task 2 has not been fully executed after

10 ms, it will be interrupted because Task 1 is executed every 10 ms and has the highest priority.

10-20 ms: Task 1 is executed first, and if there is any time left, the unfinished Task 2 in the previous cycle will

be executed.

20-30 ms: Since Task 2 is executed every 30 ms and has been finished within 10-20 ms, there is no need to

execute Task 2 at this time and only Task 1 with the highest priority is executed once.

30-40 ms: Similar as above.

40-50 ms: Task 3 appears at this time. Since Task 3 has the lowest priority, it can only be executed after

ensuring that Task 2 has been thoroughly executed.

Figure 1-12 Task Priority Interrupt Execution Sequence

2. Task priority setting of AX, TM, and TP-series PLCs

When the upper computer software of the AX, TM, and TP-series controllers creates a new standard project,

a MainTask is created by default in the Task Configuration, with its priority being 1 by default. The priority of

newly created tasks is also 1 by default, but to ensure that important tasks such as motion control are

prioritized, the performance of the controllers can be given appropriate play in some applications that

require high-performance motion control (MC). The following order is recommended for task priority setting

(if there is only one task, the task priority can be set arbitrarily).

Table 1-3 Task Priority Setting

Task Type Recommended Priority

RTC_Mod and other system parameter

modules
31

ModbusTCP 15–30

ModbusRTU 15–30

High-speed I/O 1–15

Analog input and output modules 1–15

Temperature Module 1–15

EtherCAT 0

The smaller the priority setting value, the higher the priority. A high-priority POU can interrupt the execution

of a low-priority POU, as shown in Figure 1-13, where ECT stands for EtherCAT.

INVT Medium and Large-Scale PLC Programming Manual Program Structure and Execution

202409 (V1.0) 8

Figure 1-13 POU Execution Sequence

Halt Halt Halt

Halt Halt

UPRG UPRG..UPRG..

UPRGUPRG..IO

IO UPRG MC IO UPRG MC IO UPRG MC IO UPRG MC IO UPRG MC

Halt UPRG..IO

End of

execution

End of

execution

End of

execution

End of

execution

End of

execution
End of

execution

ECT

cycle

ECT

cycle

ECT

cycle

ECT

cycle
ECT cycle (priority 0)

End of

execution
Task cycle (priority 17)

Task cycle (priority 16)

It can be seen from Figure 1-13 that when the controller executes tasks, there is a time alignment point that

cannot be observed by users, as shown on the left side of the above figure. Starting from this time point, the

tasks are executed in an order of the highest priority → the next highest priority → the lowest priority.

A low-priority task may be interrupted by a high-priority task while it is being executed, and when the

execution of the high-priority task is finished, the interrupted low-priority task will be returned to continue.

The EtherCAT task is a task with the highest priority, which is executed according to the EtherCAT cycle, and

all POUs within the task are completely executed once before the tasks with lower priority are returned.

3. Requirements for execution cycle setting in Task Configuration

The upper computer software of medium and large-scale PLC systems execute the “tasks” of user programs

in a multi-task mode, and each “task” is assigned a different execution cycle. Some global variables may

need to be accessed and modified between different POUs, so the global variables need to be interactively

synchronized, which is also performed at the “time alignment point” of the task. When the cycle of a cyclic

type task is set, the cycle times of different types of cyclic tasks are integer multiples of each other.

For example, the cycle time of the EtherCAT task is set to 4 ms or 8 ms, the cycle time of a normal cyclic task

is set to 400 ms, and the cycle time of a lower-priority task is set to 100 ms or 200 ms. The cycle time of the

EtherCAT task should not be set to 5 ms, 7 ms, 9 ms, etc., as it may easily cause an abnormal relationship

other than an integer multiple of 2.

4. Considerations in configuration of sub-device bus cycle options

In the controller device “PLC Setting → Bus Cycle → Bus Cycle Task” option, the list of Bus Cycle Task Options

provides the tasks defined in the Task Configuration of the current valid project (such as “MainTask” and

“EtherCAT Master”). If you select one of the tasks as the bus cycle of the current project, or select the option

<unspecified>, it means that the shortest task cycle time or the fastest execution cycle will be applied. You

can switch to another setting, but be sure to understand the following:

Before modifying the <unspecified> setting, you should be aware of its impact. It is a default action defined

by the device description. So, please check the description for this. By default, the task may be defined as

having the shortest cycle time, but it may also have the longest cycle time. Therefore, when using expansion

modules and EtherCAT modules, in order to improve the system operation stability (especially when using

the EtherCAT_Master_SoftMotion module), select the tasks corresponding to each module in “EtherCAT I/O

Mapping → Bus Cycle Option”. The reference routine is shown in Figure 1-14.

INVT Medium and Large-Scale PLC Programming Manual Program Structure and Execution

202409 (V1.0) 9

Figure 1-14 Example of EtherCAT Bus Cycle Task Setting

1.6 Running of Multiple Subprograms

In actual projects, the program can usually be split into many subprograms by control flow or device object,

based on which the designer can program each processing unit separately. As shown in Figure 1-15 below,

the main program is split into multiple subprograms with different flows by control flow. The purpose of

splitting is mainly to make the main program more organized and convenient for future debugging.

Figure 1-15 Splitting into Multiple Subprograms by Control Flow

Control process 1

Control process 2

Control process n

Control process 1

Control process 2

Control process n

Main program

PLC_PRG

After program

splitting

Subprogram

PRG1

Subprogram

PRG2

Subprogram

PRGn

The right half of Figure 1-15 shows the subprograms PRG1, PRG2 ... PRGn classified by control flow, while the

left half of Figure 1-15 shows the main program PLC_PRG, in which you can call subprograms PRG1 ... PRGn

respectively. There are two methods to run multiple subprograms: the first method is to add subprograms in

the Task Configuration; and the second method is to call subprograms in the main program, which is also

common and flexible. The two methods are explained in detail below.

1. Add subprograms in the Task Configuration

Users can run multiple subprograms by adding subprograms in the Task Configuration page. Click “Add Call”

to add subprograms in the sequence in which they are executed. As shown in Figure 1-16, after adding

subprograms, the corresponding tasks will be executed cyclically in a top-down sequence specified by users,

and the sequence can also be manually edited through the “Move Up” and “Move Down” functions.

INVT Medium and Large-Scale PLC Programming Manual Program Structure and Execution

202409 (V1.0) 10

Figure 1-16 Add Subprograms in the Task Configuration

2. Calling subprograms in the main program PLC_PRG

PLC_PRG is defaulted as the main program by the system, which can be understood as a car’s battery in a

sense. When the car is produced, its various components are assembled, which is equivalent to the writing

of subprograms; when the car is fully assembled, it is necessary to check whether it is usable. If you want to

start the car, you must use the battery to start its various components, such as the engine and headlamps.

The battery is equivalent to the entry point for starting the car. By calling subprograms in this way, the

operability is enhanced and the program runs more flexibly. In addition, judgment statements can be added

to the program, and nesting can be achieved.

PLC_PRG is a special POU that runs in the “freewheeling” mode by default. This POU is called every control

cycle by default without any additional task configuration. Its configuration can also be found in the Task

Configuration. Users can use it to call other subprograms, add necessary condition options when calling

subprograms, or nest subprograms to make program calls more flexible. To implement the call relationship

shown in Figure 1-17, you can write the following code in the main program PLC _PRG.

Figure 1-17 POU Calling Sequence

PLC_PRG

POU_10;

POU_20;

POU_1

POU_30;

POU_40;

POU_2

POU_3

POU_4

Main

program

As shown in Figure 1-17, the main program is PLC_PRG, which uses the structured text programming

language, and the program content is POU_1(); POU_2(). The main function of the above program is to call

and execute the POU_1 and POU_2 subprograms respectively. Since POU_1 calls POU_3 and POU_4

respectively, the PLC actually executes the program in the following sequence:

A. The PLC first executes the subprogram POU_1.

B. Since POU_1 calls POU_3 and POU_4 in sequence, POU_3 is executed first.

C. POU_4 is executed, and POU_1 is finished.

D. POU_2 is finally executed to complete a full task cycle.

The above steps A to D are repeated as the execution sequence inside the PLC.

INVT Medium and Large-Scale PLC Programming Manual Program Structure and Execution

202409 (V1.0) 11

1.7 Single Axis Control

1.7.1 Programming Instructions for Single Axis Control

The motion control of the controller and the servo axis (such as DA200) is realized based on the EtherCAT

bus network. Each EtherCAT bus cycle will perform an operation and issue a control instruction to control

the servo. Different from the previous pulse control method, the EtherCAT bus is completely implemented

by software. Attention should be paid to the following points during application:

 MC-related POUs should be configured to execute under the EtherCAT task. Most MC function blocks

cannot run normally if they are placed in the POU of a low-priority Main task.

 The PDO configuration table needs to be configured with relevant data objects; otherwise, the servo

will be unable to move due to the missing communication data object configuration, and no error

alarm will be generated in this case, making it more difficult to troubleshoot.

 The controller can set the parameters of the servo by configuring SDO.

 An MC function block instance can only be used for the control of a unique servo axis; otherwise, an

error may occur if it is used for the control of multiple servo axes.

 An MC function block must be used to monitor the running servo axis to avoid any error caused by

program logic jump without MC function block monitoring. Such error is usually difficult to

troubleshoot.

 Attention should be paid to the safe processing of debugging and it is required to ensure that the signal

configuration is consistent with the actual application. If the servo system uses an incremental encoder,

it needs to return to zero before normal operation. For movements within a limited range (such as a

lead screw), limit and safety protection signals should be set.

1.7.2 Commonly Used MC Function Blocks for Single Axis Control

An MC function block (FB) is also called an MC instruction. In fact, the object instance of an MC function

block is used in the user program, and the servo axis is controlled by the MC object instance, for example:

MC_Power1: MC_Power; // Declare instance MC_Power1

MC_Power1 (Axis=Axis1,);

Single axis control is generally used for positioning control, that is, the servo motor drives the external

mechanism to move to the specified position. Sometimes, the servo is required to run at a specified speed or

torque. In single axis control, the following MC function blocks are commonly used:

Table 1-4 Common MC Function Blocks for Single Axis Control

Control Action
MC Instructions To

Be Used
Description

Servo enable MC_Power
Run this instruction to enable the servo axis for subsequent

operation control

Absolute

position
MC_MoveAbsolute Instruct the servo to move to the specified coordinate point

Relative

position
MC_MoveRelative

Take the current position as reference and move to the

specified distance

Servo jog MC_Jog

Run the servo motor in a jog mode, which is often used for

low-speed test runs to check the device or adjust the servo

motor position

Relative

superimposed

position

MC_MoveAdditive
Based on the currently running instruction of the servo, move

to the specified distance relatively

Speed control MC_MoveVelocity Instruct the servo to run at a specified speed

INVT Medium and Large-Scale PLC Programming Manual Program Structure and Execution

202409 (V1.0) 12

Control Action
MC Instructions To

Be Used
Description

Servo halt MC_Halt
Instruct the servo to halt running. If MC_Movexxx is triggered

again, the servo can run again.

Emergency stop MC_Stop

Instruct the servo to stop in an emergency. The servo can only

run again after the stop instruction is reset and MC_Movexxx

is triggered.

Alarm reset MC_Reset
When the servo stops due to an alarm, run this instruction to

reset it

Servo home MC_Home

Instruct the servo to return to the home position. The home

signal of the application system and the limit signals on both

sides are connected to the DI port of the servo

Controller

home
MC_Homing

The control system starts to return to the home position. The

home signal of the application system and the limit signals on

both sides are connected to the DI port of the controller

1.8 Cam Synchronization Control

An electronic cam (ECAM for short) is a software system that uses a constructed cam curve to simulate a

mechanical cam to achieve the same relative motion between the camshaft and the master axis as in a

mechanical cam system. Electronic cams can be used in various fields such as automobile manufacturing,

metallurgy, mechanical processing, textiles, printing, and food packaging. An electronic cam curve is a

function curve with the master axis pulse (active axis) input as X and the corresponding output of the servo

motor (camshaft) as Y=F(X).

Figure 1-18 Electronic Cam

The electronic cam function of the PLC has the following features:

 Cam curves are easy to draw: Cams can be described by cam table, cam curve, or array, and multiple

cam chart selections and dynamic switching during running are supported.

 Cam curves are easy to correct: The running cam table can be modified dynamically.

 Support one master and multiple slaves: One master axis can have multiple slave axes corresponding

to it.

 Cam tappet: multiple cam tappets and multiple setting intervals are allowed.

 Cam clutch: The user program can make it enter and exit the cam running.

 Special functions: Virtual master axis, phase offset, and output superimposition are supported.

Note: The so-called “online cam curve modification” refers to the modification of the key point

coordinates of the cam curve according to the needs of control characteristics during the execution of the

program written by users. The key point coordinates are generally modified, but you can also modify the

number of key points, the distance range of the master axis, etc.

The electronic cam of the PLC has three control elements:

1. Master axis: Reference axis for synchronous control.

INVT Medium and Large-Scale PLC Programming Manual Program Structure and Execution

202409 (V1.0) 13

2. Slave axis: a servo axis that follows the movement of the master axis according to the non-linear

characteristics.

3. Cam table: Data table or cam curve describing the relative position, range, cyclicity of the master-slave

axes.

Commonly used function blocks related to the electronic cam are listed in the following table:

Table 1-5 Common Function Blocks of Electronic Cam

MC Instruction Description

MC_CamTableSelect
Run this instruction to associate the relationship between

the master axis, the slave axis, and the cam table.

MC_CamIn Instruct the slave axis to enter cam operation

MC_CamOut Instruct the slave axis to exit cam operation

MC_Phasing Modify the phase of the master axis

1.8.1 Cyclic Mode of the Cam Table

Single-cycle mode (Periodic:=0): After the cam table cycle is completed, the slave axis will exit the cam

running state, as shown in Figure 1-19.

Figure 1-19 Single-Cycle Mode

Slave axis

position

Master axis

position

MC_CamTableSelect.Priodic=0

MC_CamIn.Execute=1

Slave axis

position

0 360 360 360

t

0

Cyclic mode (Periodic:=1): After the cam table cycle is completed, the slave axis starts the next cam cycle

until the user program instructions it to exit the cam running state, as shown in Figure 1-20.

Figure 1-20 Cyclic Mode

Slave axis

position

Master axis

position

MC_CamTableSelect.SlaveAbsolute:=False

MC_CamIn.Execute=1

Slave axis

position

0 360 360 360

t
0

Slave axis

position

Description of the slave axis's relative

position

1.8.2 Input Method of the Cam Table

When a new cam table is created, the system will automatically generate the simplest cam curve, and you

can edit it to form his or her own cam curve table.

You can increase or decrease the number of key points on the cam curve or change the coordinates of the

key points.

The line pattern between two key points on the cam curve can be set to a straight line or a quintic

polynomial, and the system will optimize each curve to minimize sudden changes in speed and acceleration.

INVT Medium and Large-Scale PLC Programming Manual Program Structure and Execution

202409 (V1.0) 14

Figure 1-21 Cam Curve

1.8.3 Data Structure of the Cam Table

In Invtmatic Studio, for each cam table, there is a data structure and characteristic data describing the cam

table. The figure below shows the data structure of the “CAM0” cam table. Please pay attention to the names

of the variables in its structure.

Figure 1-22 Data Structure of the Cam Table

There is a data structure inside Invtmatic Studio to describe the characteristics of the cam table. We can also

manually write a cam table or modify the characteristic data of the cam through data structure access

operations.

Note: When we declare the CAM0 cam table, the system automatically declares the CAM0 data structure of

the global variable type by default, and also declares the CAM0_A[i] array at the same time.

For example, modify the number or coordinates of key points in the CAM0 cam table in the user program:

CAM0.nElements:=10; Modify the number of key points to 10

CAM0.xEnd:=300; Modify the end point of the master axis to 300

For example, modify the coordinates of two key points in the user program:

CAM0_A[2].dx:=10

CAM0_A[2].dy:=30

CAM0_A[2].dv:=1

CAM0_A[2].da:=0

CAM0_A[3].dx:=30

CAM0_A[3].dy:=50

CAM0_A[3].dv:=1

CAM0_A[3].da:=0

INVT Medium and Large-Scale PLC Programming Manual Program Structure and Execution

202409 (V1.0) 15

1.8.4 Reference and Switching of Cam Tables

The cam table is stored in an array inside the controller and can be referred to by a specific MC_CAM_REF

variable type. For example, to declare:

Cam table q: MC_CAM_REF;

You can assign a value to this variable, or you can consider it as referring to a specific cam table:

Cam table q:=Cam0; // Refer to the required cam table

Cam table q: MC_CAM_REF; // Cam table pointer;

TableID: uint; // Cam table selection instruction, which can be set on the HMI;

CaseTableIDof

0: Cam table q:=Cam table A;

1: Cam table q:=Cam table B;

2: Cam table q:=Cam table C;

End_case

MC_CamTableSelect_0(// Cam relationship

Master:=Virtual master axis

Slave:=Cam slave axis

CamTable:=Cam table q

Execute:=bSelect, // Cam table selection is triggered at a rising edge

Periodic:=TRUE,

MasterAbsolute:=FALSE,

SlaveAbsolute:=FALSE);

The above routine uses the assignment operation of the MC_CAM_REF variable to realize the switching of

multiple cam tables.

1.9 Programming Suggestions

In CODESYS, you can set the priority of a task, with a total of 32 levels (a number between 0 and 31, with 0

representing the highest priority and 31 representing the lowest priority). When a program is being executed,

high-priority tasks take precedence over low-priority tasks. A task with the highest priority 0 can interrupt

the execution of lower-priority programs in the same resource, causing the execution of the lower-priority

programs to be slowed down. When assigning task priority levels, do not assign tasks with the same priority.

Note:

 For one task configuration, you can only set one priority, cycle type, and interval. If different execution

characteristics are required, you need to add multiple task configurations.

 One task configuration can contain multiple POUs, which are executed in the sequence in which the

POUs are added in the task.

 The task priority of EtherCAT bus communication is generally set to the highest priority 0, and the scan

cycle is generally set to 1–4 ms. The smaller the set value, the higher the accuracy of motion control.

When there are many axes, the scan cycle should be appropriately extended; otherwise, the CPU load

rate will be high and axis loss may occur.

Task configuration – running status monitoring

After entering the online mode, you can use the system’s built-in monitor to monitor task execution related

parameters such as average, maximum, and minimum cycle time of a task. During the project development

phase, this function can be used to test the maximum, minimum, and average cycle time of the program to

determine the stability of the program and optimize the task cycle time set by the program.

INVT Medium and Large-Scale PLC Programming Manual Program Structure and Execution

202409 (V1.0) 16

In the task configuration, the following time setting relationship should be followed. This setting method

can better optimize the task cycle and “watchdog” time to ensure the stability and real-time performance of

the program.

“Watchdog” trigger time ＞ Cyclic time ＞ Maximum program cycle time

If the program cycle time is longer than the Cyclic time, the CPU will detect that the program has exceeded

the count, which will affect the real-time performance of the program. If the program cycle time is longer

than the watchdog trigger time, the CPU will detect a watchdog failure and stop program execution.

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

202409 (V1.0) 17

2 EtherCAT Operation Mechanism

2.1 EtherCAT Operation Principle

2.1.1 Introduction to the EtherCAT Protocol

EtherCAT (Ethernet for Control Automation Technology) is a technology that overcomes the inherent

limitations of other Ethernet solutions and has the following key features:

Efficient data processing: Traditional Ethernet solutions require receiving data packets, decoding, and

copying process data to each device, while EtherCAT slave devices can read data with corresponding

addressing information as the message passes through its node, and insert input data as the message

passes. This processing method results in a message delay of only a few nanoseconds.

Data transmission process: The frame sent from the master is transmitted and passes through all slaves to

the last slave of the segment or branch. When the last device detects its open port, it returns the frame to

the master. Since the sent and received Ethernet frame compresses a large amount of device data, the

available data rate can reach over 90%, the 100Mb/s full-duplex feature is fully utilized, and the effective

data rate can reach over 100 Mb/s.

Design of master and slave: The EtherCAT master uses a standard Ethernet media access controller (MAC)

without the need for an additional communication processor, which means that any device controller with

an integrated Ethernet interface can implement the EtherCAT master, regardless of the operating system or

application environment. The EtherCAT slave uses an EtherCAT slave controller (ESC) to process data

dynamically at a high speed. Network performance does not depend on the performance of the

microprocessor used in the slave because all communications are completed in the ESC hardware. The

process data interface (PDI) provides a dual-port random access memory (DPRAM) for the slave application

layer to implement data exchange.

Precise synchronization: Precise synchronization is particularly important in distributed processes that

require extensive synchronization actions, such as when multiple servo axes perform linked tasks

simultaneously. Accurate calibration of distributed clocks is an effective solution to achieve synchronization.

Compared to fully synchronous communication, distributed calibrated clocks are more tolerant to delay

errors to some extent.

With these features, EtherCAT provides an efficient, flexible, and reliable industrial Ethernet solution

suitable for various automation control applications.

2.1.2 Working Counter (WKC)

Each EtherCAT message ends with a 16-bit working counter (WKC). The WKC is a working counter used to

record the number of read and write times for the EtherCAT slave device. The EtherCAT slave controller

calculates the WKC in hardware, and the master checks the WKC in the sub-message after receiving the

returned data. If it is not equal to the expected value, it means that the sub-message is not processed

correctly. When a sub-message passes through a certain slave, the WKC will be increased by 1 if it is a single

read or write operation. If it is a read/write operation, the WKC will be increased by 1 when the read

operation is successful, by 2 when the write is successful, and by 3 when both are completed. The WKC is the

accumulation of the processing results of each slave. The description of WKC increment is shown in Table

2-1.

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

202409 (V1.0) 18

Table 2-1 WKC Increment

Instruction Data Type Increment

Read
Read failed No change

Read succeeded +1

Write
Write failed No change

Write succeeded +1

Read/write

Failed No change

Read succeeded +1

Write succeeded +2

Read/write succeeded +3

2.1.3 Addressing Mode

EtherCAT communication is realized by the master sending EtherCAT data frames to read and write the

internal storage area of the slave device. EtherCAT messages use multiple addressing modes to operate the

internal storage area of the ESC for multiple communication services. EtherCAT addressing modes are

shown in Figure 2-1. An EtherCAT segment is equivalent to an Ethernet device. The master first uses the MAC

address of the Ethernet data frame header to address the segment, and then uses the 32-bit address in the

EtherCAT sub-message header to address the device in the segment. There are two ways for in-segment

addressing: device addressing and logical addressing. Device addressing performs read/write operations on

a specific slave. Logical addressing is oriented towards process data and can realize multicast. The same

sub-message can read/write multiple slave devices.

Figure 2-1 EtherCAT Network Addressing Modes

Ethernet data frame
header address

Segment
addressing

Device addressing Logical addressing

Sequential
addressing

Setting addressing

Addressing by the
physical location to
which the device is

connected

Addressing by node
number

Process data addressing

EtherCAT sub-message header
address area

MAC address

2.1.3.1 Segment Addressing

Depending on the connection type of the EtherCAT master and its segment, the following two modes can be

used to address a segment.

1. Direct mode

An EtherCAT segment is directly connected to a standard Ethernet port of the master device, as shown in

Figure 2-2. In this case, the master uses the broadcast MAC address and the EtherCAT data frame is shown in

Figure 2-3.

Figure 2-2 EtherCAT Segment in Direct Mode

Master

device
Slave

device

Slave

device

Slave

device

Slave

device

Slave

device

Slave

device

An EtherCAT network segment is equivalent to an Ethernet device

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

202409 (V1.0) 19

Figure 2-3 Addressed Content of EtherCAT Segment in Direct Mode

Destination address:
FF FF FF FF FF FF

Source address:
FF FF FF FF FF FF

6 bytes 6 bytes

Frame type
(0x88A4)

2 bytes

EtherCAT
message header

2 bytes

EtherCAT data

44 ~ 1498 bytes

 PCS

4 bytes

2. Open Mode

An EtherCAT segment is connected to a standard Ethernet switch, as shown in Figure 2-4. In this case, the

segment requires a MAC address, and the address in the EtherCAT data frame sent from the master is the

MAC address of the segment it controls, as shown in Figure 2-5. The first slave device in the EtherCAT

segment has an ISO/IEC 8802.3 MAC address, which represents the entire segment, and the slave is called a

segment address slave, which can exchange the destination address area and source address area within

the Ethernet. If EtherCAT data frame is sent over UDP, the device will also exchange the source and

destination IP addresses and the source and destination UDP port numbers, making the response frame

fully meet the UDP/IP protocol.

Figure 2-4 EtherCAT Segment in Open Mode

Switch

Slave

device

with a

segment

address

Slave

device

Slave

device

Slave

device

Slave

device

Slave

device

An EtherCAT network segment is equivalent to an

Ethernet device

Master

device

Ordinary Ethernet

device Slave

device

with a

segment

address

Slave

device

Slave

device

Slave

device

Slave

device

Slave

device

An EtherCAT network segment is equivalent to an

Ethernet device

Master

device

Figure 2-5 Addressed Content of EtherCAT Segment in Open Mode

Destination address:
Segment MAC address

Source address:
MAC address of master

6 bytes 6 bytes

Frame type
(0x88A4)

2 bytes

EtherCAT
message header

2 bytes

EtherCAT data

44 ~ 1498 bytes

 PCS

4 bytes

2.1.3.2 Device Addressing

During device addressing, the 32-bit address in the EtherCAT sub-message header is divided into a 16-bit

slave device address and a 16-bit slave device internal physical storage space address, as shown in Figure

2-6. The 16-bit slave device address can address 65535 slave devices, each of which can have up to 64 local

address spaces.

During device addressing, each message only addresses a unique slave device, but it has two different

device addressing mechanisms (sequential addressing and set addressing).

Figure 2-6 EtherCAT Device Addressing Structure

Command Index Address area Length R
Status

bit
C R M

8bit 8bit 32bit 11bit 2 1 1 1 16bit

Sequential
addressing

Setting
addressing

Logical
addressing

Slave sequential
address

Memory offset
address

Slave setting
address

Memory offset
address

Logical address

Sequential
addressing

Setting
addressing

Logical
addressing

16bit 16bit

1. Sequential addressing

For sequential addressing, the address of a slave is determined by its connection position in the segment,

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

202409 (V1.0) 20

and a negative number is used to represent the position of each slave in the segment determined by the

wiring sequence. When the sequential addressing sub-message passes through each slave device, its

sequential address is increased by 1; and when the slave receives a message, the message with a sequential

address of 0 is the message addressed to itself. Since this mechanism updates the device address as the

message passes, it is also called “auto-increment addressing”.

As shown in Figure 2-7, there are 3 slave devices in the segment, and their sequentially addressed addresses

are 0, -1, -2, and so on. When the master uses sequential addressing to access the slave, the address change

of the sub-message is shown in Figure 2-8. The master sends 3 sub-messages to address 3 slaves, where the

addresses are 0, -1, and -2 respectively, such as the data frame 1 in Figure 2-8. When the data frame reaches

the slave ①, the slave ① checks that the address in the sub-message 1 is 0, thus knowing that the

sub-message 1 is the message addressed to itself. After the data frame passes through the slave ①, all

sequential addresses are increased by 1, called 1, 0, and -1, such as the data frame 2 in Figure 2-8. When it

reaches the slave ②, the slave ② finds that the sequential address in the sub-message 2 is 0, which is its own

message. Similarly, subsequent slaves are addressed in this way. As shown in Figure 2-7, in actual

engineering applications, sequential addressing is mainly used in the startup phase, when the master

configures addresses for each slave. Thereafter, the slave can be addressed using an address that is

independent of its physical location. The sequential addressing mechanism can be used to set an address

for the slave, as shown in Figure 2-8.

Figure 2-7 Sequentially Addressed Slave Address

DVI

IPC

0x0000(0) 0xFFFF(-1) 0xFFFE(-2)

Data
frame 1

Data
frame 2

Data
frame 3

Figure 2-8 Change of Sub-message Address during Sequential Addressing

0

Sub-message 1 Sub-message 2

0xFFFF

(-1)

Sub-message 3

Data
frame 1 … … … … … …

0xFFFE

(-2)
… …

The sequential address of the message sent by the master, that is, the address arriving at the slave ①

1 0
Data

frame 2 … … … … … …
0xFFFF

(-1)
… …

The sequential address of the message processed by the slave ①, that is, the address arriving at the slave ②

2 1… … … … … … 0 … …

The sequential address of the message processed by the master ②, that is, the address arriving at the slave ③

Data
frame 3

2. Set addressing

During set addressing, the addresses of slaves are independent of their consecutive sequence within the

segment. As shown in Figure 2-9, the addresses can be configured by the master to slaves during the data

link startup phase, or can be loaded by the configuration data of the slaves during the power-on

initialization phase, and then the master uses sequential addressing to read the set address of each slave

during the link startup phase. Its message structure is shown in Figure 2-10.

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

202409 (V1.0) 21

Figure 2-9 Slave Address in Set Addressing Mode

DVI

IPC

1000 1234 5678

Data
frame 1

Data
frame 2

Data
frame 3

①

② ③

Figure 2-10 Message Structure in Set Addressing Mode

1000

Sub-message 1 Sub-message 2

1234

Sub-message 3

Data
frame 1 … … … … … … 5678 … …

2.1.3.3 Logical Addressing

For logical addressing, the slave address is not defined separately, but using a section of the 4GB logical

address space in the addressed segment. The 32-bit address area within the message is used as the logical

address of the overall data to complete the logical addressing of the device. The logical addressing mode is

implemented by the Fieldbus Memory Management Unit (FMMU). The FMMU function is located inside each

ESC and maps the local physical storage address of a slave to the logical address in the segment. The

schematic diagram is shown in Figure 2-11.

Figure 2-11 FMMU Operation Principle

Ethernet
message
header

Sub-
message
header 1

PLC data
Sub-

message
header 2

NC data
Sub-

message n
CRCData n

Data n

PLC data

NC data

0

Sub-message 1 Sub-message 2 Sub-message n

When receiving an EtherCAT sub-message for logical addressing of data, the slave device will check for an

FMMU unit address match. If so, it inserts the input type data into the corresponding position of the

EtherCAT sub-message data area, and extracts the output type data from the corresponding position of the

EtherCAT sub-message data area.

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

202409 (V1.0) 22

2.1.4 Distributed Clock

2.1.4.1 Distributed Clock Concept

Precise synchronization is particularly important for distributed processes that act simultaneously, for

example, when several servo axes perform coordinated movements simultaneously. The distributed clock

mechanism enables all slaves to be synchronized to a reference clock. The first distributed clock-capable

slave connected to the master is used as the reference clock to synchronize the slave clocks of other devices

and the master. In order to achieve precise clock synchronization control, data transmission delay and local

clock offset must be measured and calculated, and the drift of the local clock must be compensated. The

synchronous clock involves the following six concepts.

1. System time

System time is the system time used by the distributed clock. It starts from 0:00 on January 1, 2001, and is

expressed as a 64-bit binary variable in nanoseconds (ns) and can be timed for up to 500 years. It can also be

expressed as a 32-bit binary variable with a maximum of 4.2 s, which is usually used for communication and

time stamping.

2. Reference clock and slave clock

The EtherCAT protocol defines the first distributed clock-capable slave connected to the master acts as the

reference clock, and the clocks of other slaves are called slave clocks. The reference clock is used to

synchronize the slave clocks of other slave devices and the master clock. The reference clock provides the

EtherCAT system time.

3. Master clock

The EtherCAT master also has a timing function, which is called the master clock. The master clock can be

synchronized as a slave clock in a distributed clock system. During the initialization phase, the master can

send the master clock to the reference clock slave in the format of system time so that the distributed clock

uses the system time for timing.

4. Local clock and its initial offset and clock drift

Each DC slave has a local clock, which runs independently and is timed using the local clock signal. When

the system starts, there is a certain difference between the local clock of each slave and the reference clock,

which is called initial clock offset. During operation, since the reference clock and the DC slave clock use

their own clock sources, their timing cycles drift to a certain extent, which will cause the clocks to run

asynchronously and the local clock to drift. Therefore, the initial clock offset and clock drift must be

compensated.

5. Local system time

The local clock of each DC slave generates a local system time after compensation and synchronization. The

distributed clock synchronization mechanism is to keep the local system time of each slave consistent. The

reference clock is also the local system clock of the corresponding slave.

6. Transmission delay

There will be a certain delay when data frames are transmitted between slaves. It includes both internal

device and physical connection delays. Therefore, when synchronizing slave clocks, the transmission delay

between the reference clock and multiple slave clocks should be considered.

2.1.4.2 Clock Synchronization Process

Clock synchronization consists of the following three steps:

Step 1 Transmission delay measurement

When the distributed clock is initialized, the master will initialize the transmission delay for all slaves

in all directions, calculate the deviation value between each slave clock and the reference clock, and

write it to the slave clock.

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

202409 (V1.0) 23

Step 2 Reference clock offset compensation (system time)

The local clock of each slave will be compared with the system time, and then different comparison

results will be written into different slaves so that all slaves will get the absolute system time.

Step 3 Reference clock drift compensation

Clock drift compensation and local time are used to periodically compensate for the error and

fine-tune the local clock. The following diagrams illustrate two application cases of compensation

operations: Figure 2-12 illustrates the case where the system time is less than the local clock of the

slave, while Figure 2-13 illustrates the case where the system time is greater than the local time.

Figure 2-12 Clock Synchronization Process: System Time ＜ Local Time

Target: The slave clock
copys the system time

t system time

System
time

Reference clock

Transmission
delay

Include drift
compensation of the
system time

Local clock

Transmission delay
compensation

Offset compensation

Drift compensation

t local clock

Tx

Rx

Slave clock
X

Figure 2-13 Clock Synchronization Process: System Time ＞ Local Time

Target: The slave clock
copys the system time

t system time

System
time

Reference clock

Transmission
delay

Include drift
compensation of
the system time

Local clock

Transmission
delay

compensation

Offset
compensation

Drift
compensation

t local clock

Tx

R

x

Slave clock
X

For EtherCAT, data exchange is based entirely on pure hardware mechanisms. Since a logical ring structure

is used for communication (with the help of the physical layer of full-duplex Fast Ethernet), the master clock

can simply and accurately determine the delay offset propagated by each slave clock, and vice versa.

Distributed clocks are all adjusted based on this value, which means that a very precise, deterministic

synchronization error time base of less than 1 μs can be used across the network. Its structure is shown in

Figure 2-14.

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

202409 (V1.0) 24

Figure 2-14 Principle of Synchronous Clock

For example, the difference between two devices is 300 nodes, the cable length is 120 m, and the

communication signal is captured using an oscilloscope. The result is shown in Figure 2-15.

Figure 2-15 Synchronous Clock Performance Test

This function is very important for motion control. It calculates the speed through the continuously detected

position values. When the sampling time is very short, even a small instantaneous jitter in the position

measurement will cause a large step change in the speed calculation. In EtherCAT, the introduction of

time-stamped data types as a logical extension allows high-resolution system time to be added to the

measured value, which is made possible by the huge bandwidth that Ethernet provides.

2.2 EtherCAT Communication Mode

In actual automation control systems, there are usually two forms of data exchange between applications:

time-critical and non-time-critical.

The time-critical form indicates that a specific action must be completed within a certain time window. If

communication cannot be completed within the required time window, control failure may occur.

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

202409 (V1.0) 25

Time-critical data is usually sent cyclically, which is called cyclic process data communication.

Non-time-critical data can be sent acyclically, and acyclic mailbox data communication is adopted in

EtherCAT.

2.2.1 Cyclic Process Data Communication

The master can use logical read, write, or read/write instructions to control multiple slaves at the same time.

In the cyclic data communication mode, the master and the slave have multiple synchronous operation

modes.

2.2.1.1 Slave Device Synchronization Mode

1. Freewheeling mode

In the freewheeling mode, the local control cycle is generated by a local timer interrupt. The cycle time can

be set by the master and is an optional feature for the slave. The local cycle in the freewheeling mode is

shown in Figure 2-16. Where T1 is the time it takes for the local microprocessor to copy data from the

EtherCAT slave controller and calculate the output data; T2 is the output hardware delay; and T3 is the input

latch offset time. These parameters reflect the time response performance of the slave.

Figure 2-16 Local Cycle in Freewheeling Mode

Cycle time

Local timer event Local timer event

Min. cycle time

T1 T2 T3

Copy the
output

Output valid Input latch

Get and copy
the input

2. Synchronization with data input and output events

The local cycle is triggered when a data input or output event occurs, as shown in Figure 2-17. The master

can write the sending cycle of the process data frame to the slave, while the slave can check whether it

supports this cycle time or optimize the cycle time locally. The slave can also choose to support this function.

It is usually synchronized with data output events. If the slave only has input data, the data is synchronized

with input events.

Figure 2-17 Local Cycle Synchronization with Data Input and Output Events

Cycle time

Data input/output event

Min. cycle time

T1 T2 T3

Copy the
output

Output valid Input latch

Get and copy the
input

Data input/output event

Data frameData frame

3. Synchronization with distributed clock synchronization events

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

202409 (V1.0) 26

The local cycle is triggered by an SYNC event, as shown in Figure 2-18. The master must complete the

transmission of the data frame before the SYNC event, so the master clock must also be synchronized with

the reference clock.

Figure 2-18 Local Cycle Synchronization with SYNC Events

Cycle time

SYNC event

Min. cycle time

T1 T2 T3

Control
output

Input latch

Get and copy the
input

SYNC event

Data frameData frame

Output valid

To further optimize slave synchronization performance, the master should copy the output information

from the received process data frame when a data sending and receiving event occurs, and then wait for the

SYNC signal to arrive before continuing local operations. As shown in Figure 2-19, the data frame must arrive

T1 ahead of the SYNC signal. The slave has completed data exchange and control operation before the SYNC

event, and can immediately perform output operations after receiving the SYNC signal, thereby further

improving synchronization performance.

Figure 2-19 Optimized Local Cycle Synchronization with SYNC Events

Cycle time

Data input/output event

Min. cycle time

T1 T2 T3

Output valid Input latch

Data input/output event

Data frame

Data frame

SYNC event SYNC event

2.2.1.2 Master Device Synchronization Mode

1. Cyclic mode

In the cyclic mode, the master sends process data frames cyclically. The master cycle is usually controlled by

a local timer. The slave can run in the freewheeling mode or in synchronization with received data events.

For the slave running in synchronization, the master should check the cycle time of the corresponding

process data frame to ensure that it is greater than the minimum cycle time supported by the slave.

The master can send multiple cyclic process data frames with different cycle times in order to obtain the

optimal bandwidth. For example, a shorter cycle is used to send motion control data and a longer cycle is

used to send I/O data.

2. DC mode

The master runs in the DC mode similarly to the cyclic mode, except that the local cycle of the master should

be synchronized with the reference clock. The master's local timer should be adjusted based on the ARMW

message that publishes the reference clock. During operation, after the ARMW message used to dynamically

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

202409 (V1.0) 27

compensate for clock drift is returned to the master, the master clock can be adjusted based on the

reference clock time read back to be roughly synchronized with the latter.

In the DC mode, all DC-enabled slaves should be synchronized with the DC system time. The master should

also synchronize other communication cycles with the DC reference clock time. The working principle of

synchronizing the local cycle with the DC reference clock is shown in Figure 2-20.

Figure 2-20 Master DC Mode

Local timer event

Application Application

Local timer event

Data
frame D U

Additional offset

of master

Precomputed fixed

offset

Data
frame D U

Master offset
DC Base

Master

Slave

Transmission

delay

SYNC offset

S0 S0

SYNC SYNC

The local operation of the master is started by a local timer. The local timer should have an advance over the

DC reference clock timing, which is the sum of the following times.

 Control program execution time

 Data frame transmission time

 Data frame transmission delay D

 Additional offset U (related to the jitter of each slave delay time and the jitter of the control program

execution time, used for adjusting the master cycle)

2.2.2 Acyclic Mailbox Data Communication

Acyclic data communication in the EtherCAT protocol is called mailbox data communication, which can be

carried out in both directions - master-to-slave and slave-to-master. It supports full-duplex, bi-directional

independent communication and multi-user protocols. Slave-to-slave communication is managed by the

master acting as a router. The mailbox communication data header includes an address field so that the

master can resend the mailbox data. Mailbox data communication is a standard way to implement

parameter exchange and is required if cyclic process data communication needs to be configured or other

acyclic services are needed.

The mailbox data message structure is shown in Figure 2-21. Usually the mailbox communication value

corresponds to one slave, so the device addressing mode is used in the message. The data elements in its

data header are explained in Table 2-2.

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

202409 (V1.0) 28

Figure 2-21 Mailbox Data Unit Structure

Sub-message

header
Data WKC

Mailbox protocol data

Mailbox data

header
Command Command-associated data

Length Channel Priority

16 bit

0 16
Address

16 bit

32

6 bit

38
Type

40

4 bit2 bit

44
Counter

4 bit

Table 2-2 Mailbox Data Header

Data

Element

Number of

Digits
Description

Length 16 The length of the followed mailbox service data

Address 16

The slave address of the data source in the case of master-to-slave

communication

The slave address of the data destination in the case of slave-to-slave

communication

Channel 6 Reserved

Priority 2 Reserved

Type 4

Mailbox type, that is, the subsequent protocol type:

0: Mailbox communication error

2: EoE (Ethernet over EtherCAT)

3: CoE (CANopen over EtherCAT)

4: FoE (File Access over EtherCAT)

5: SoE (Sercos over EtherCAT)

15: VoE (Vendor Specific Profile over EtherCAT)

Counter Ctr 4

The sequential number used for duplicate detection, increasing by 1 for

each new mailbox service (For compatibility with older versions, only 1–7

are used)

 Master-to-slave communication – mailbox write instruction

The master sends the data area write instruction to send the mailbox data to the slave. The master needs to

check the working counter WKC in the slave mailbox instruction response message. If the working counter is

1, it means the write instruction succeeded. On the contrary, if the working counter does not increase, it is

usually because the slave did not finish reading the previous instruction or did not respond within the

specified time, and the master must resend the mailbox data write instruction.

 Slave-to-master communication – mailbox read instruction

When the slave has data to send to the master, it must first write the data into the input mailbox buffer

cache and then the data is read by the master. If there is valid data waiting to be sent from the slave ESC

input mailbox data area, the master will send the appropriate read instruction to read the slave data as soon

as possible. The master has two ways to determine whether the slave has filled the mailbox data into the

input data area: one is to use FMMU to cyclically read a flag bit, and the flag bits of multiple slaves can be

read through logical addressing, but the disadvantage lies in that a FMMU unit is required for each slave; the

other is to simply poll the data area ofthe ESC input mailbox. The working counter of the read instruction

increases by 1, indicating that the slave has filled the new data into the input data area.

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

202409 (V1.0) 29

2.3 EtherCAT State Machine

The EtherCAT State Machine (ESM) coordinates the states of the master and slave applications at

initialization and runtime.

The EtherCAT device must support four states, in addition to an optional state.

 Init: Initial, abbreviated as I

 Pre-Op: Pre-operational, abbreviated as P

 Safe-Op: Safe-operational, abbreviated as S

 Op: Operational, abbreviated as O

 Boot-Strap: Boot state (optional), abbreviated as B

The transition relationship between the above states is shown in Figure 2-22. When the Init state transits to

the Op state, the transition must be in the order of “Init → Pre-Op → Safe-Op → Op. Only when returning from

the Op state can the state be skipped, and other states cannot be skipped. The Boot-Strap state is an

optional state and can only transit to and from the Init state. All state changes are initiated by the master,

which sends a state control instruction to the slave to request a new state. The slave responds to the

instruction, executes the requested state transition, and writes the result to the slave state indication

variable. If the requested state transition fails, the slave will raise an error flag.

Figure 2-22 EtherCAT State Transition Relationship

Initialization

Pre-operation

(OI) (OP)

Safe operation

(PS) (SP)

(SO) (OS)

Operation

BootStrap

(IP) (PI) (IB) (BI)(SI)

 Init: Initial

The Init state defines the initial communication relationship between the master and the slave at the

application layer. At this time, the master and slave application layers cannot communicate directly, and the

master uses the Init state to initialize some configuration registers of the ESC. If the master supports mailbox

communication, the mailbox communication parameters are configured.

 Pre-OP: Pre-operational

In the Pre-Op state, mailbox communication is activated. The master and the slave can use mailbox

communication to exchange initialization operations and parameters related to the application. Process

data communication is not permitted in this state.

 Safe-Op: Safe-operational

In the Safe-Op state, the slave application reads input data but does not generate output signals. The device

has no output and is in a “safe state”. At this time, mailbox communication is still possible.

 Op: Operational

In the Op state, the slave application reads data, the master application sends output data, and the slave

device generates output signals. At this time, mailbox communication is still possible.

 Boot-Strap: Boot state (optional)

The function of the Boot-Strap state is to download the device firmware program. The master can use the

mailbox communication of the FoE protocol to download a new firmware program to the slave.

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

202409 (V1.0) 30

Table 2-3 EtherCAT State Machine Transition Summary

State and State Transition Description

Init
There is no communication at the application layer, and the master can

only read and write ESC registers

Init to Pre-OP (IP)

The master configures the slave address register

If mailbox communication is supported, the mailbox channel

parameters are configured; if distributed clocks are supported, DC

related registers are configured

The master writes the state control register to request the “Pre-Op”

state

Pre-OP Application layer mailbox data communication

Pre-Op to Safe-Op (PS)

The master uses the mailbox to initialize process data mapping

The master configures the SM channel used for process data

communication

The master configures the FMMU

The master writes the state control register to request the “Safe-Op”

state

Safe-Op
The master sends valid output data

The master writes the state control register to request the “Op” state

Op
All inputs and outputs are valid, and mailbox communication can still

be used

2.4 EtherCAT Servo Drive Control Application Protocol

The IEC 61800 series of standards is a generic specification for adjustable speed electrical power drive

systems. IEC 61800-7 defines the standard for the communication interface between the control system and

the power drive system, including network communication technology and application profiles, as shown in

Figure 2-23. As a network communication technology, EtherCAT supports the profile CiA402 in the CANopen

protocol and the application layer of the SERCOS protocol, which are called CoE and SoE respectively.

Figure 2-23 IEC 61800-7 Architecture

General PDS Interface Specification

IEC 61800-7 --Generic interface and use of profiles for power drive systems

IEC 61800-7-1 --Interface definition

Annex A
Mapping of profile type 1

(CiA 402)

Annex B
Mapping of Profile type

2 (CIP Motion)

Annex C
Mapping of Profile type

3 (PROFIdrive)

Annex D
Mapping of Profile type

4 (SERCOS)

IEC 61800-7-200 --Profile specifications

IEC 61800-7-201

Profile type 1
(CiA 402)

IEC 61800-7-202

Profile type 2
(CIP Motion)

IEC 61800-7-203

Profile type 3
(PROFIdrive)

IEC 61800-7-204

Profile type 4
(SERCOS)

IEC 61800-7-300 --Mapping of profiles to network technologies

IEC 61800-7-302

Mapping of profile
type 2 to:

 DeviceNet

 ControlNet

 EtherNet/IP

IEC 61800-7-301

Mapping of profile
type 1 to:

 CANopen

 EtherCAT

 ETHERNET

 PowerLink

IEC 61800-7-303

Mapping of profile
type 3 to:

 PROFIBUS

 PROFINET

IEC 61800-7-304

Mapping of profile
type 4 to:

 SERCOSⅠ+Ⅱ

 SERCOSⅢ

 EtherCAT

2.4.1 EtherCAT-based CAN Application Protocol (CoE)

CANopen device and application profiles are used across a wide range of devices and applications, such as

I/O components, drives, encoders, proportional valves, hydraulic controllers, as well as application profiles

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

202409 (V1.0) 31

for the plastics or textile industries. EtherCAT can provide the same communication mechanism as the

CANopen mechanism, including object dictionaries, PDOs (process data objects) and SDOs (service data

objects), and even similar network management. EtherCAT can thus be implemented with minimum effort

on devices equipped with CANopen, and large parts of the CANopen firmware can be reused. In addition,

objects can be optionally extended to take advantage of the huge bandwidth resources provided by

EtherCAT.

The EtherCAT protocol supports the CANopen protocol at the application layer and makes corresponding

supplements, including the following main functions:

 Achieve network initialization by using mailbox communication to access CANopen object dictionaries

and objects.

 Achieve network management by using CANopen application objects and optional time-driven PDO

messages.

 Map process data by using object dictionaries and cyclically transmit instruction data and state data.

Figure 2-24 shows the CoE device structure whose communication modes mainly include cyclic process data

communication and acyclic data communication. The differences between the two in practical applications

will be explained below.

Figure 2-24 CoE Device Structure

EtherCAT application

EtherCAT device

Object dictionary Process data

SDO PDO mapping

Mailbox Process data

CoE CoE

EtherCAT slave device

Ethernet physical layer

2.4.1.1 CoE Object Dictionary

The CoE protocol fully complies with the CANopen protocol and has the same object dictionary definition,

as shown in Table 2-4. Table 2-5 lists the CoE communication data objects, which extend the relevant

communication objects 0x1C00–0x1C4F for EtherCAT communication to set the type of storage

synchronization manager, communication parameters, and PDO data allocation.

Table 2-4 CoE Object Dictionary Definition

Index Number Range Description

0x0000–0x0FFF Data type description

0x1000–0x1FFF

Communication objects include: device type, identifier, PDO

mapping, CANopen-compatible CANopen-specific data objects, and

EtherCAT extended data objects reserved in EtherCAT

0x2000–0x5FFF Manufacturer-defined objects

0x6000–0x9FFF Profile-defined data objects

0xA000–0xFFFF Reserved

Table 2-5 CoE Communication Data Objects

Index Description

0x1000 Device type

0x1001 Error register

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

202409 (V1.0) 32

Index Description

0x1008 Equipment manufacturer and equipment name

0x1009 Manufacturer hardware version

0x100A Manufacturer software version

0x1018 Device identifier

0x1600–0x17FF RxPDO mapping

0x1A00–0x1BFF TxPDO mapping

0x1C00 Synchronization manager communication type

0x0x1C10–0x1C2F
Process data communication synchronization manager PDO

assignment

0x0x1C30–0x1C4F Synchronization management parameters

2.4.1.2 CoE Cyclic Process Data Communication (PDO)

In cyclic data communication, the process data can contain multiple PDO mapping data objects. The data

objects 0x1C10–0x1C2F used by the CoE protocol define the corresponding PDO mapping channels. Table

2-6 shows the specific structure of the communication data in the EtherCAT protocol.

Table 2-6 CoE Communication Data Objects

Index Object Type Description Type

0x1C10 Array SM0 PDO assignment Unsigned 16-bit integer

0x1C11 Array SM1 PDO assignment Unsigned 16-bit integer

0x1C12 Array SM2 PDO assignment Unsigned 16-bit integer

0x1C13 Array SM3 PDO assignment Unsigned 16-bit integer

… … … …

0x1C2F Array SM31 PDO assignment Unsigned 16-bit integer

An SM2 PDO assignment example (0x1C12) is given below. Table 2-7 lists examples of its values. For example,

two data are mapped in PDO0. The first communication variable is the control word, and the corresponding

mapped index and sub-index address are 0x6040:00; the second communication variable is the target

position value, and the corresponding mapped index and sub-index address are 0x607A:00.

Table 2-7 Example of SM2 Channel PDO Assignment Object Data 0x1C12SM2

0X1C12

Sub-index
Value

PDO Data Object Mapping

Sub-index Value
Number of

Bytes
Description

0 3 - - 1
Number of PDO mapping

objects

1
PDO0

0x1600

0 2 1
Number of data mapping

objects

1 0x6040:00 2 Control word

2 0x607A:00 4 Target position

1
PDO1

0x1601

0 2 1
Number of data mapping

objects

1 0x6071:00 2 Target torque

2 0x6087:00 4 Target slope

1
PDO2

0x1602

0 2 1
Number of data mapping

objects

1 0x6073:00 2 Maximum current

2 0x6075:00 4 Motor rated current

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

202409 (V1.0) 33

There are several ways for PDO mapping:

1. Simple devices do not require a mapping protocol: simple process data is used and read from the slave

EEPROM.

2. Read PDO mapping: fixed process data mapping; read using SDO communication.

3. Optional PDO mapping: multiple fixed groups of PDOs are selected through the object 0x1C1X; read

through SDO communication.

4. Variable PDO mapping: configured through CoE communication.

2.4.1.3 CoE Acyclic Process Data Communication (SDO)

The EtherCAT master realizes acyclic data communication by reading and writing mailbox data SM channels.

The CoE protocol mailbox data structure is shown in Figure 2-25.

Figure 2-25 CoE Data Header

8 bytes

Mailbox data header
Type=3(CoE)

No. Reserved Type

CoE command Command-related data

2 bytes Up to 1478 bytes

9 bits 3 bits 4 bits

The number in Figure 2-25 is explained in detail in Table 2-8.

Table 2-8 Definitions of CoE Instructions

Number of CoE

Instruction Field
Description

Number Number when PDO is sent

Type

Message type:

0: Reserved 1: Emergency message

2: SDO request 3: SDO response

4: TxPDO 5: RxPDO

6: Remote transmission request of a TxPDO 7: Remote transmission

request of a RxPDO

8: SDO message 9–15: Reserved

 SDO service

CoE communication service types 2 and 3 are SDO communication services, and the SDO data structure is

shown in Figure 2-26.

Figure 2-26 SDO Data Frame Format

6 bytes

Mailbox data header
Type=3(CoE)

SDO
control

Index Optional data

CoE
command

Command-related data

2 bytes Up to 1478 bytes

8 bits 16 bits 8 bits

Sub-
index

Data

32 bits 1–1470 bits

Standard CANopen data frame

Type=2 or 3

SDO is usually divided into the following three types according to the transmission method. Table 2-9 lists

the specific content of the SDO data frame, and the results are shown in Figure 2-27

1. Fast transmission service: As with the standard CANopen protocol, only 8 bytes are used and up to 4

bytes of valid data can be transmitted.

2. Regular transmission service: More than 8 bytes can be used to transmit more than 4 bytes of valid data.

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

202409 (V1.0) 34

The maximum transmittable valid data depends on the storage area capacity managed by the mailbox

SM.

3. Segmented transmission service: When the amount exceeds the mailbox capacity, the data is

transmitted in segments.

Table 2-9 CoE Data Frame Content

SDO Control Standard CANopen SDO Service

Index Device object index

Sub-index Sub-index

Data Data in SDO

Data (optional)
There are 4 bytes of optional data that can be added to the data

frame

Figure 2-27 SDO Transmission Type

Mailbox storage

capacity

Fast transmission

Mailbox data header
CoE

Data < 4 bytes

Regular transmission

Mailbox data header
CoE

4 bytes < data
< mailbox size

Segmented transmission

Mailbox data header
CoE

Data > mailbox size

Mailbox data header
CoE

Mailbox data header
CoE

Mailbox data header
CoE

If the data to be transmitted is larger than 4 bytes, the regular transmission service is used. In regular

transmission, the 4 data bytes used in fast transmission represent the complete size of the data to be

transmitted, and the extended data part is used to transmit the valid data. The maximum capacity of the

valid data is the mailbox capacity minus 16.

2.4.2 Servo Drive Profiles According to IEC 61800-7-204 (SERCOS)

Serial Real-time Communication System (SERCOS) is recognized as a communication interface for

high-performance real-time systems, especially for motion control applications. The profiles for its servo

drive and communication technology fall within the scope of the IEC 61800-7-204 standard. The key points

regarding the integration and compatibility of SERCOS and EtherCAT are listed below:

Mapping of SERCOS and EtherCAT (SoE): The mapping of the servo drive profiles of SERCOS to EtherCAT is

defined in Part 304 of the IEC 61800-7-204 standard. SoE (SERCOS over EtherCAT) provides an EtherCAT

mailbox-based access method for SERCOS servo drive parameters and functions.

Parameter access and service channel: The service channel for access to all parameters and functions in the

drive is based on the EtherCAT mailbox. This approach ensures the compatibility of EtherCAT with the

existing SERCOS protocol and enables access to the value, attributes, name, unit, and other information of

IDN (SERCOS identifier).

Data transmission mechanism: SERCOS process data (AT and MDT format data) is transmitted through the

EtherCAT device protocol mechanism, and its mapping method is similar to that of SERCOS. In this way,

SERCOS data can be efficiently transmitted in the EtherCAT network.

State machine mapping: The EtherCAT slave state machine can be easily mapped to the states of the

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

202409 (V1.0) 35

SERCOS protocol. This state machine mapping makes the integration of SERCOS and EtherCAT smoother,

ensuring compatibility and interoperability between the two.

Scalability and data length limitation: While ensuring compatibility, EtherCAT also focuses on scalability

related to data length limitations. This scalability ensures that EtherCAT can flexibly respond to different

data requirements when processing complex applications.

2.4.2.1 SoE State Machine

A comparison between the communication phases of the SERCOS protocol and the EtherCAT State Machine

is shown in Figure 2-28. The SoE protocol has the following features:

1. SERCOS protocol communication phases 0 and 1 are overwritten by the EtherCAT Init state.

2. The communication phase 2 corresponds to the Op state, allowing the use of mailbox communication to

implement service channels and manipulate IDN parameters.

3. The communication phase 3 corresponds to the Safe-Op state, where cyclic data transmission begins. At

this time, only input data is valid, and output data is ignored. Meanwhile, clock synchronization can be

achieved.

4. The communication phase 4 corresponds to the Op state, where all inputs and outputs are valid.

5. The phase switching process instructions S-0-0127 (communication phase 3 switching check) and

S-0-0128 (communication phase 4 switching check) of the SERCOS protocol are not used and are

replaced by PS and SO state transitions respectively.

6. The SERCOS protocol only allows a high-level communication phase to switch down to the

communication phase 0, while EtherCAT allows any state to switch down, as shown in Figure 2-28 a). For

example, transition from the Op state to the Safe-Op state, or from the Safe-Op state to the Pre-Op state.

SoE should also support this transition, as shown in Figure 2-28 b). If the slave does not support it, an

error bit shall be set in the EtherCAT AL State Register.

Figure 2-28 SoE State Machine

Initialization

a) EtherCAT state machine

Pre-operation

Safe operation

Operation

(IP) (PI)

(OI)

(OP)

(PS) (SP)

(SO) (OS)

(SI)

Communication phase 1

IEC 61784

CPF 16

Communication
phase 2

Communication
phase 3 (with
input)

Communication phase 4

(S-0-0127)

(S-0-0128)

b) SERCOS state machine

EtherCAT

2.4.2.2 IDN Inheritance

The SoE protocol inherits the DIN parameter definition of the SERCOS protocol. Each IDN parameter has a

unique 16-bit IDN, which corresponds to a unique data block that stores all information about the

parameter. The data block consists of 7 elements, as listed in Table 2-10. IDN parameters are divided into

two parts: standard data and product data. Each part is divided into 8 parameter groups, which are

represented by different IDNs, as listed in Table 2-11.

Table 2-10 IDN Data Block Structure

Number Name

Element 1 IDN

Element 2 Name

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

202409 (V1.0) 36

Number Name

Element 3 Attribute

Element 4 Unit

Element 5 Minimum allowable value

Element 6 Maximum allowable value

Element 7 Data value

Table 2-11 IDN Number Definition

Bit 15 14–12 11–0

Meaning Classification Parameter group Parameter number

Value
0: Standard data S; 1: Product data

P
0–7: 8 parameter groups 0000–4095

When EtherCAT is used as the communication network, some IDNs in the SERCOS protocol for

communication interface control are deleted, as listed in Table 2-12. And the definitions of some IDNs are

modified, as listed in Table 2-13.

Table 2-12 Deleted IDNs

IDN Description

S-0-0003 Shortest AT transmission starting time

S-0-0004 Transmit/receive transition time

S-0-0005 Minimum feedback processing time

S-0-0009 Position of data record in MDT

S-0-0010 Length of MDT

S-0-0088 Receive to receive recovery time

S-0-0090 Instruction value proceeding time

S-0-0127 CP3 transition check

S-0-0128 CP4 transition check

Table 2-13 Modified IDNs

IDN
Original

Description
Updated Description

S-0-0006
AT transmission

starting time

Time offset in which an application writes AT data to the ESC

storage area after a synchronization signal within the slave.

S-0-0014 Interface status Mapping of slave DL state and AL state code

S-0-0028 MST error counter Mapping of slave RX error counter to loss counter

S-0-0089
MDT transmission

starting time

Time offset of obtaining new MDT data from the ESC storage

area after a synchronization signal within the slave

2.4.2.3 SoE Cyclic Process Data

The output process data (MDT data content) and input process data (AT data content) are configured by

S-0-0015, S-0-0016, and S-0-0024. Process data does not include service channel data and only includes

cyclic process data. The output process data includes servo control words and instruction data, while the

input process data includes status words and feedback data. S-0-0015 sets the type of cyclic process data, as

listed in Table 2-14, and the definitions of parameters S-0-0016 and S-0-0024 are listed in Table 2-15. The

master writes these three parameters through mailbox communication in the “Pre-Op” phase to configure

the content of cyclic process data.

Table 2-14 Definition of Parameter S-0-0015

S-0-0015 Instruction Data Feedback Data

0: Standard type 0 N/A No feedback data

1: Standard type 1 Torque instruction S-0-0080 (2 No feedback data

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

202409 (V1.0) 37

S-0-0015 Instruction Data Feedback Data

bytes)

2: Standard type 2
Speed instruction S-0-0036 (4

bytes)

Speed feedback S-0-0053 (4

bytes)

3: Standard type 3
Speed instruction S-0-0036 (4

bytes)

Position feedback S-0-0051 (4

bytes)

Speed feedback S-0-0053 (4

bytes)
4: Standard type 4

Position instruction S-0-0047 (4

bytes)

5: Standard type 5

Position instruction S-0-0047 (4

bytes)

Speed instruction S-0-0036 (4

bytes)

Position feedback S-0-0051 (4

bytes)

Or speed feedback S-0-0053 (4

bytes) +

Position feedback S-0-0051 (4

bytes)

6: Standard type 6
Speed instruction S-0-0036 (4

bytes)
No feedback data

7: Customized S-0-0024 configuration S-0-0016 configuration

Table 2-15 Definitions of Parameters S-0-0016 and S-0-0024

Data Word S-0-0024 Definition S-0-0016 Definition

0
Maximum length of output data

(Word)

Maximum length of input data

(Word)

1
Actual length of output data

(Word)

Actual length of input data

(Word)

2
First IDN of instruction data

mapping

First IDN of feedback data

mapping

3
Second IDN of instruction data

mapping

Second IDN of feedback data

mapping

… … …

2.4.2.4 SoE Acyclic Service Channel

The EtherCAT SoE Service Channel (SSC) is implemented by the EtherCAT mailbox communication function

and used for acyclic data exchange, such as reading/writing IDNs and their elements. The SoE data header

format is shown in Figure 2-29.

Figure 2-29 SoE Data Header Format

6 bytes

Mailbox data header
type=5(SoE)

Command
Subsequent

data

Operation
element

identification

SoE command
Command-related

data

4 bytes Up to 1476 bytes

3 bits 1 bit 1 bit

Error Address

3 bits 16 bits8 bits

IDN

Table 2-16 Description of SoE Data Instructions

Data Area Description

Instruction

i.e. the instruction type:

0x01: Read request

0x02: Read response

0x03: Write request

0x04: Write response

0x05: Notification

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

202409 (V1.0) 38

Data Area Description

0x06: Slave information

0x07: Reserved

Subsequent data

Subsequent data signal:

0x00: No subsequent data frame

0x01: The transmission is not completed and there are subsequent data frames

Error

Error signal:

0x00: No error

0x01: An error occurred, and the data area has a 2-byte error ID

Address Specific address of the slave device

Operation element

identification

Element selection for single element operation, defined by bit, with each bit

corresponding to one element; number of elements for addressing constructs

IDN
IDN number of the parameter, or the remaining segments during the segment

operation

Commonly used SSC operations include SSC read operations, SSC write operations, and SSC process

instructions.

SSC read operation: The master initiates the SSC read operation and writes the SSC request to the slave.

After receiving the read operation request, the slave responds with the requested IDN number and data

value. The master can read multiple elements at the same time, so the slave should answer multiple

elements. If the slave only supports single element operation, it should respond with the first element

requested.

SSC write operation: This operation is used to download data from the master to the slave, which should

answer with the result of the write operation. Segment operation consists of one or more segmented write

operations and an SSC write response service.

SSC process instruction: It is a special acyclic data. Each process instruction has a unique IDN and specified

data elements, which are used to start certain specific functions or processes of the servo device. It usually

takes a while to execute these functions or processes. The process instruction only triggers the start of the

process, so after that, the service channel it occupies will become immediately available for the transfer of

other acyclic data or process instructions. There is no need to wait until the triggered functions or processes

to complete their execution.

INVT Medium and Large-Scale PLC Programming Manual Axis State Mechanism

202409 (V1.0) 39

3 Axis State Mechanism

3.1 Axis State Transition

Axis state transition is designed based on the PLCopen state machine diagram. The specific transition is

shown in Figure 3-1.

Figure 3-1 Axis State Transition

 When the axis is standstill, it can transit to various operational states.

 It can transit to the standstill state from multiple states.

 Discrete motion, synchronized motion, and continuous motion states can be switched directly with

each other.

 If an alarm occurs on the servo axis (Errorstop), the MC_Reset and MC_Power instructions must be run

first to put the axis into the standstill state before the axis can run again.

 If the MC instruction is not used to instruct the axis to move according to the above transition diagram,

the axis will not respond and an error alarm message will be generated from the MC function block.

INVT Medium and Large-Scale PLC Programming Manual Basics of Programming

202409 (V1.0) 40

4 Basics of Programming

4.1 Variable

Variables are to-be-processed abstract data stored in the memory. They are names used to identify PLC

input/output and storage areas within the PLC, and can replace physical addresses in programs. Data values

stored in the variables can be changed at any time as needed. During program execution, the value of a

variable can change.

Before using a variable, you must declare it and specify its type and name. A variable has a name, type, and

value. The data type of a variable determines the size and type of memory it represents. A variable name is

an identifier in the program source code.

4.1.1 Variable Declaration

Variable declaration is to specify the name, type, and initial value of a variable. Variable declaration is very

important. Undeclared variables cannot pass compilation and therefore cannot be used in the program.

Users can declare variables in the Program Organization Unit (POU), Global Variable List (GVL), and

Auto-Declare dialog box. In CoDeSys applications, variable declaration is divided into two categories:

normal variable declaration and direct variable declaration.

 Normal variable declaration

It is the most commonly used variable declaration, which does not need to be associated with hardware

peripherals or communications and is only used for internal logic of the project. Normal variable declaration

must comply with the following rules:

<Identifier>:<data type>{:=<initial value>};

The part in {} is optional, such as: nTest:BOOL;, nTest:BOOL:=TRUE;

 Direct variable declaration

In CoDeSys applications, this declaration is required when you need to map variables with the I/O modules

of the PLC or communicate with external devices over the network. You can use the keyword AT to directly

link a variable to a specific address. Direct variable declaration must comply with the following rules:

AT<address>:

<ATidentifier>AT<address>:<data type>{:=<initialization value>};

The part in {} is optional.

Direct variable declaration starts with “%”, followed by the position prefix symbol and the size prefix symbol.

If there is a grade, the grade is represented by an integer and a decimal point symbol “.”, such as %IX0.0

and %QW0. The specific format of direct variable declaration is shown in Figure 4-1.

Figure 4-1 Direct Variable Declaration

Identifier AT Address : data type;

Identifier AT %I

%Q

%M

X

B

W

D

L

Byte Bit

Byte

Data type

I: input unit; Q: output unit; M: memory cell. The size prefixes are defined as shown in Table 4-1.

INVT Medium and Large-Scale PLC Programming Manual Basics of Programming

202409 (V1.0) 41

Table 4-1 Definitions of Size Prefixes

Prefix Symbol Definition Conventional Data Type

X Bit BOOL

B Byte BYTE

W Word WORD

D Double word DWORD

L Long word LWORD

*
Internal variables without specified positions are automatically

allocated by the system.

[Example 4.1] A variable of double word type Var1 is defined in the program. If you need to fetch part of the

data in the variable and convert it into a variable of Boolean, byte, or word type, what is its starting address

and how to convert it?

VAR

Var1 AT%ID48 :DWORD;

END_VAR

%I indicates that this variable belongs to the input unit, and its specific address is %ID48. Table 4-2 lists that

when CoDeSysV3.x is addressing, the system will make allocation according to the size of the data type (X:

bit, B: byte, W: word, D: dword).

In the address memory map, the word addresses %IW96 and %IW97 are combined to correspond to %ID48,

because the byte starting address after 48*2 (bytes) is 96. Similarly, the four byte variables of byte

addresses %IB192, %IB193, %IB194, and %IB195 correspond to %ID48 when combined, because the

corresponding byte starting address after 48*4 (bytes) is exactly 192.

Table 4-2 Memory Map

%IX 96.0–96.7 96.8–192.15 97.0–97.7 97.8–97.15

%IB 192 193 194 195

%IW 96 97

%ID 48

[Example 4.2] Based on [Example 4.1], it is easy to understand the following address mapping relationship.

%MX12.0: the first digit of %MB12.

%IW4: the input word unit 4 (byte units 8 and 9).

%Q*: output in a specific location.

%IX1.3: the third bit of the first byte unit of input.

4.1.2 Data Type

Whether you are declaring a variable or a constant, you must use a data type. The standardization of data

types is an important sign of openness of programming languages. In CoDeSys, data types fully comply with

the standards defined by IEC 61131-3. CoDeSys divides data types into standard data types, extended data

types of the IEC1131-3 standard, and custom data types. The data type determines how much storage space

it will occupy and what type of value it will store.

CoDeSys standard data types are divided into five categories: Boolean type, integer type, real number type,

string type, and time data type.

Table 4-3 lists the standard data types supported by CoDeSys.

INVT Medium and Large-Scale PLC Programming Manual Basics of Programming

202409 (V1.0) 42

Table 4-3 Standard Data Types

Data

Category
Data Type Keyword

Number

of Digits
Value Range

Boolean Boolean BOOL 1 FALSE (0) or TRUE (1)

Integer

Byte BYTE 8 0–255

Word WORD 16 0–65535

Double word DWORD 32 0–4294967295

Long word LWORD 64 0–(264-1)

Short integer SINT 8 -128–127

Unsigned

short integer
USINT 8 0–255

Integer INT 16 -32768–32767

Unsigned

integer
UINT 16 0–65535

Double

integer
DINT 32 -2147483648–2147483647

Unsigned

double

integer

UDINT 32 0–4294967295

Long integer LINT 64 -263–(263-1)

Real

number

Real number REAL 32 1.175494351e-38–3.402823466e+38

Long real

number
LREAL 64

2.2250738585072014e-308–

1.7976931348623158e+308

String String STRING 8*N -

Time data Storage time

TIME

32

T#0ms–T#71582m47s295ms

TINE_OF_DAY T0D#0:0:0–T0D#1993:02:47.295

DATE D#1970-1-1–D#2106-02-06

DATE_AND_TIME
DT#1970-1-1-0:0:0–

DT#2106-02-06-06:28:15

4.1.2.1 Boolean

Boolean variables are used to represent TRUE/FALSE values. A Boolean variable has only two states: TRUE or

FALSE. In CoDeSys, it can also be represented by 0 or 1.

Type Memory Usage

BOOL 8 digits

[Example 4.3] Assign the AND logic result of the door opening signal and the material gripping signal to the

Boolean variable bReady. The structured text language code is as follows.

VAR

bReady,bDoors_Open,bGrip:BOOL;

END_VAR

bReady:=(bDoors_Open and bGrip);

In CoDeSys, variables of the same type can be declared uniformly and separated by “,”.

[Example 4.4] Assign the decimal number 211 to the variable bReady. The structured text language code is

as follows.

VAR

bReady:BOOL;

END_VAR

INVT Medium and Large-Scale PLC Programming Manual Basics of Programming

202409 (V1.0) 43

bReady:=211;

Assigning integer data to Boolean data is obviously incorrect. After program compilation, the compiler will

return an error message “C0032: Cannot convert “USINT” to “BOOL”.

Boolean variables are the most commonly used variable type. Therefore, it is crucial to learn how to use

them correctly since they are often used in process control statements (such as IF, CASE, and loop

statements).

Note: If the lowest bit in the memory is set (e.g. 2#00000001), the BOOL type variable is “TRUE”. If the

lowest bit in the memory is not set, the BOOL variable is FALSE, for example 2#00000000. All other values

cannot be converted correctly and are displayed as (***INVALID:16#xy*** during online monitoring). Similar

problems may occur, for example, if overlapped memory ranges are used in a PLC program.

For example, if you define a Boolean array, A:ARRAY[0..7]OFBOOL, the total memory it occupies in the

system is not an 8-bit byte but eight 8-bit bytes.

4.1.2.2 Integer

The integer type represents whole numbers without decimal points. In CoDeSys, integer is the largest

standard category with the most members. There is no need to memorize the keywords of each type. As

long as you understand the rules, it is very easy to remember them. The following briefly explains the rules

of integer prefixes.

 U_ represents an unsigned data type, and U is the abbreviation of Unsigned.

 S_ represents the short data type, and S is the abbreviation of Short.

 D_ represents the double data type, and D is the abbreviation of Double.

 L_ indicates the long data type, and L is the abbreviation of Long.

For example, UINT represents unsigned integer data, USINT represents unsigned short integer data, and

LINT represents long integer data.

[Example 4.5] Example of integer data.

VAR

nValue1:USINT;

nValue2:LINT;

nValue3:WORD;

END_VAR

nValue1:=4;

nValue3:=16;

nValue2:=nValue1+nValue3;

The final output result of nValue2 after program running is 20.

The difference between unsigned data and signed data lies in the highest bit.

For unsigned data, all storage space is used to store data without a sign bit. For example, an UINT type

variable uses all the 16 bits to store data, that is, the data range is 0–65535.

For signed data, the highest bit is used as the sign bit. For example, if the highest bit is used as a sign bit for

an INT type variable, and the remaining 15 bits are used for data storage, the data range is -32768–32767.

Therefore, the range of positive numbers that can be stored in a signed integer variable is half that in an

unsigned integer variable.

Here are two examples of unsigned and signed variables:

nValue1:UINT;

nValue2:INT;

INVT Medium and Large-Scale PLC Programming Manual Basics of Programming

202409 (V1.0) 44

Figure 4-2 Unsigned and Signed Data Structures

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

=65535

=32767

nValue1

nValue2

First bit of

data

Sign bit

4.1.2.3 Real Number

Real numbers, also called floating-point numbers, are mainly used to process numerical data containing

decimals. The real number type includes two data types: REAL and LREAL. REAL real numbers occupy 32 bits

of storage space, while LREAL long real numbers occupy 64 bits of storage space. In CoDeSys, there are two

representations for real and long real constants.

1. Decimal form

It consists of numbers and a decimal point. 0.123, 123.1, and 0.0 are all decimal numbers.

2. Exponential form

For example, 123e3 or 123E3 both represent 123×103. However, it should be noted that there must be a

number before the letter e (or E), and the exponent after e must be an integer. For example, e3, 2.1e3.5, .e3,

e, etc. are all ungrammatical exponential forms.

A floating-point number can have multiple exponential representations, for example, 123.456 can be

represented as 123.456e0, 12.3456e1, 1.23456e2, and so on. Here, 1.23456e2 is called the “normalized

exponential form”. That is, in the decimal part before the letter e (or E), there should be one (and only one)

non-zero digit to the left of the decimal point.

[Example 4.6] Assign 12.3 to the rRealVar1 variable. The structured text language code is as follows:

VAR

rRealVar1:REAL;

END_VAR

RealVar1:=1.23e1;

In Example 4.6, 1.23e1 means 12.3. Of course, you can also use the expression RealVar1:=12.3 to meet the

requirement in the above example.

At this time, if the requirement is changed to assigning 0.123 to the rRealVar1 variable, according to the rules

mentioned above, you only need to change the expression to:

RealVar1:=1.23e-1;

or,

RealVar1:=0.123;

Note: Support for the data type LREAL depends on the target device.

During compilation, whether the 64-bit LREAL type is converted to REAL (with possible information loss) or

remains unchanged requires reference to the corresponding documentation of different hardware products.

If a REAL or LREAL data type is converted to an SINT, USINT, INT, UINT, DINT, UDINT, LINT or ULINT data type

and the value of the real data type is outside the range of the integer, the result will be uncertain and the

value depends on the target system.

This situation may generate an exception. In order to get target-independent codes, all range outliers

should be processed by the application If REAL and LREAL data are within the range of the integer,

conversion between them can be performed on all systems.

INVT Medium and Large-Scale PLC Programming Manual Basics of Programming

202409 (V1.0) 45

4.1.2.4 String

A string is a sequence of characters. String constants use single quotes as their prefix and suffix. You can also

enter spaces and special characters such as ampersands. These characters are treated like all other

characters. In CoDeSys, a string type variable can contain any string of characters, enclosed in single quotes.

For example, ‘Hello’, ‘Howareyou’, ‘CoDeSys’and‘why?’ are all constant strings. The declared

size determines the storage space required to store the variable. The storage space here refers to the

number of characters in the string, enclosed in parentheses or square brackets. The specific operation and

declaration methods are as follows.

 If the string size is not specified when the variable is defined, the system will allocate 80 characters to

the variable by default, and the actual storage space occupied in the system = [80+1] bytes.

For example, Str1:STRING:=‘a’ is defined in the variable declaration. Although the actual initial value of the

Str1 variable contains only one character, no brackets are used in the declaration to limit the string size.

Therefore, the memory space occupied by Str1 in the system is 80+1 bytes.

 If the size is defined, the actual storage space occupied in the system = [(the defined string size) + 1]

bytes. In CoDeSys, there is generally no limit on the length of a string, but string functions can only

process strings with a length between 1 and 255 characters. For example, to define two strings, the

statements are as follows:

Str1:STRING[10]:=‘a’;

Str2:STRING:=‘a’;

The above two statements are similar except that there is an additional storage space limit [10] in the first

statement. Figure 4-3 shows the difference between these two statements in the program memory. On the

left, since Str1 is limited to 10 bytes, the actual byte size occupied in the program is 10+1 or 11 bytes. The

default allocation for Str2 is 80 characters, and the actual size is 80+1 or 81 characters.

Figure 4-3 String Storage Mode

Address Str1

1 a

2

3

4

5

...

10

11

Address Str2

1 a

2

3

4

5

...

80

81

Generally speaking, the default size of 80 characters can satisfy most applications. However, if the

application contains a large amount of string data, but the actual character data in each string is very small,

this will cause a large waste of data storage area. Limiting the size can save a lot of storage space for other

variables. If a variable is initialized with a string and the string is too long for the variable’s data type, the

string will be truncated accordingly from right to left.

When a string is represented in a program, single quotes ‘XXX’ are required to distinguish it from normal

variables.

[Example 4.7] Assign the string ‘HelloCoDeSys’ to the str variable.

VAR

str:STRING;

nNum:WORD;

END_VAR

str:=‘HelloCoDeSys’;

INVT Medium and Large-Scale PLC Programming Manual Basics of Programming

202409 (V1.0) 46

nNum:=SIZEOF(str); (*Use the SIZEOF instruction to view the storage space usage*)

The result of program execution is shown in Figure 4-4. The actual number of characters in ‘HelloCoDeSys’ is

13 and occupies a storage space of 14 bytes. However, the output result of the SIZEOF instruction is 81 bytes.

This is because the string size is not specified and the system automatically allocates 80 characters to the str

variable.

Figure 4-4 String Instance Running Results

[Example 4.8] Assign the string ‘HelloCoDeSys’ to the str variable, which is defined as 12 characters in size.

VAR

str:STRING[12];

nNum:WORD;

END_VAR

str:=‘HelloCoDeSys’;

nNum:=SIZEOF(str);

The actual result of program execution is shown in Figure 4-5.

Figure 4-5 String Instance Running Results

It can be seen from the running results that str only shows ‘HelloCoDeSy’, missing an ‘s’, which means that

the redundant part has been automatically truncated by the system. The storage space occupied by the

string is 13 bytes.

4.1.2.5 Time Data

Time data types include TIME, TIME_OF_DAY/TOD, DATE, and DATE_AND_TIME/DT. The system processes

this data internally in a similar way to the double word (DWORD) type.

1. TIME: time, accurate to millisecond (ms), and ranging from 0 to 71582m47s295ms. The syntax format is

as follows.

t#<time declaration>

A TIME constant always consists of a start character T or t (or TIME or time) and a numeric identifier #. Then,

the actual time declaration follows, including day (d flag), hour (h flag), minute (m flag), second (s flag), and

millisecond (ms flag). It should be noted hat the time items must be set according to the order of time length

units (i.e., d before h, h before m, m before s, s before ms), but not all time length units need to be included.

Examples of correct use of time constants in ST language assignment statements are as follows:

TIME1:=T#14ms;

TIME1:=T#100S12ms;

(*The value of the highest unit can exceed its limit*)

TIME1:=t#12h34m15s;

INVT Medium and Large-Scale PLC Programming Manual Basics of Programming

202409 (V1.0) 47

[Example 4.9] Definition and use of time type variables.

VAR

tTime:TIME;

END_VAR

tTime:=T#3d19h27m41s1ms;

Note: Time can overflow, for example, the hour can exceed 24 h. If T#3d29h27m41s1ms is written during

value assignment, the system will automatically correct the final output result to T#4d5h27m41s1ms.

The following time constant assignment is incorrect.

tTime:=15ms; (*T# is missing*)

tTime:=t#4ms13d; (*wrong order*)

2. TIME_OF_DAY/TOD: Time of day, accurate to millisecond (ms), and ranging from 0:0:0 to

1193:02:47.295. The time of day declaration uses the format of “<hour:minute:second>”. The syntax

format is as follows.

tod#<time declaration>

In addition to “tod#”, you can also use “TOD#”, “time_of_day”, and “TIME_OF_DAY”.

[Example 4.10] Definition and use of time of day type variables.

VAR

tTime_OF_DAY:TIME_OF_DAY;

END_VAR

tTime_OF_DAY:=TOD#21:32:23.123;

The time expressed by the above statement is 21h:32m:23s:123ms.

3. DATE: Date, accurate to day (d), and ranging from 1970-01-01 to 2106-02-06. Date declaration uses the

format “<year-month-day>”. The syntax format is as follows.

dt#<date declaration>

In addition to “d#”, you can also use “D#”, “date”, and “DATE”. These constants can be used to enter dates.

When declaring a DATE constant, you can enter the start character d, D, DATE, or date followed by a # sign.

Then, you can enter any date in the format YYY-MM-DD.

[Example 4.11] Definition and use of date type variables.

VAR

tDate:DATE;

END_VAR

tDate:=D#2014-03-09;

The time expressed by the above statement is March 9, 2014.

4. DATE_AND_TIME/DT: Date and time, accurate to second (s), and ranging from 1970-01-01-00:00 to

2106-02-06-06:28:15. The declaration of date and time uses the format of

“<year-month-day-hour:minute:second>” and the syntax is as follows.

dt#<date and time declaration>

In addition to “dt#”, you can also use “DT#”, “date_and_time”, and “DATE_AND_TIME”.

[Example 4.12] Definition and use of date and time type variables.

VAR

tDT:DATE_AND_TIME;

END_VAR

tDT:=DT#2014-03-09-16:22:31.223;

The time expressed by the above statement is 16h:22m:31s:223ms on March 9, 2014.

INVT Medium and Large-Scale PLC Programming Manual Basics of Programming

202409 (V1.0) 48

4.1.3 Variable Type

Table 4-4 Types of Variables

Keyword of

Variable Type
Variable Attribute

External

Read/Write

Internal

Read/Write

VAR Local variable - R/W

VAR_INPUT Input variable, provided externally R/W R

VAR_OUTPUT
Output variable, provided by internal variables to

external devices
W R/W

VAR_IN_OUT Input-output variable R/W R/W

VAR_GLOBAL
Global variable, which can be used in all

configurations and resources
R/W R/W

VAR_TEMP
Temporary variable, which are used by programs and

function blocks for internal storage
- R

VAR_STAT Static variable - -

VAR_EXTERNAL
External variable, which can be modified within the

program, but must be provided by global variables
R/W R/W

VAR, VAR_INPUT, VAR_OUTPUT, and VAR_IN_OUT are the most commonly used variable types in program

organization units (POUs). VAR_GLOBAL is also used extensively in actual engineering projects.

4.1.4 Persistent Variable

Table 4-5 List of Variable Attributes

Keyword of Additional Variable

Attribute
Additional Variable Attribute

RETAIN Retain variable, used for power failure retention

PERSISTENT Persistent variable

VAR RETAIN PERSISTENT

VAR PERSISTENT RETAIN

With the same function, both are persistent variables used for

power failure retention

CONSTANT Constant

PERSISTENT

Currently, only a few PLCs still retain independent memory areas for storing PERSISTENT type data. In

CoDeSysV3.x, the original power failure retention function is canceled and replaced with

VARRETAINPERSISTENT or VARPERSISTENTRETAIN, which are exactly the same in function.

The declaration format of a PERSISTENT type variable is as follows:

VARGLOBALPERSISTENTRETAIN

<identifier>:<data type>;

END_VAR

Memory storage location: Like RETAIN variables, RETAINPERSISTENT and PERSISTENTRETAIN variables are

also stored in a separate memory area.

Resetting of persistent variables:

Retain variables are identified with the keyword “RETAIN”. These variables always retain their values, even

after an abnormal or normal shutdown of the controller or when the “warm reset” instruction is executed.

When the program is re-run, the stored values undergo further processing. A specific example is that a pie

counter on a production line restarts counting after a power failure. In this case, all other variables are

reinitialized rather than using their initialization values or standard initialization values. In contrast to

persistent variables, retain variables are reinitialized when the program executes a new download.

Persistent variables are identified by the keyword “PERSISTENTRETAIN”. Unlike retain variables, these

INVT Medium and Large-Scale PLC Programming Manual Basics of Programming

202409 (V1.0) 49

variables continue to retain their values after a re-download or after executing the instruction “cold reset” or

“original reset”. Table 4-6 shows which online instructions will reset persistent variables when executed.

Table 4-6 List of Online Instruction Behaviors for Persistent Variables

Online

Instruction
VAR VAR RETAIN VAR PERSISTENT RETAIN

Warm reset - X X

Cold reset - - X

Original reset - - -

Download - - X

Online change X X X

Re-download - X X

Note: “X” = Retention value, “-” = Initial value.

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 50

5 Programming Language

5.1 Overview

Different engineering applications have different optimal programming methods, and each programming

language has its own characteristics. You can choose the appropriate programming language according to

the needs of the actual engineering application. The following briefly introduces CoDeSys's 6 languages with

different characteristics.

1. Structured Text (ST): Its advantages lie in that it can realize complex operation control and requires

high skills of programmers, while its disadvantages lie in that the code needs to be converted into

machine language during compilation, which will lead to long compilation time, slow execution speed,

and poor intuitiveness and ease of operation.

2. Ladder Diagram (LD): It corresponds to the electrical diagram. Its advantage lies in its intuitiveness,

which is easy for electrical technicians to learn and master, while its disadvantage lies in that the

program description is often not clear enough when dealing with complex control system

programming. Ladder Diagram is the most widely used PLC programming language in the domestic

industrial automation field.

3. Function Block (FBD): With function blocks as design units, we can start from the control function. Its

advantages lie in that it facilitates the analysis and understanding of control schemes, is intuitive and

easy to master, and has good operability. When dealing with complex control systems, It can still be

described clearly in graphical form. Its disadvantages lie in that each function block takes up program

storage space and prolongs the program execution cycle.

4. Instruction List (IL): Its advantages lie in that it is easy to remember and master, has a corresponding

relationship with the ladder diagram (LD), is convenient for mutual conversion and program check, and

is not limited by the screen size during programming and debugging, and the input elements are not

restricted, while its disadvantage lies in that, like the ladder diagram, the program description of

complex systems is not clear enough.

5. Sequential Function Chart (SFC): The completed functions are represented by the main line. Its

advantages lie in that the operation process is clear and easy to understand; for large programs, the

design can be divided into different tasks and a more flexible program structure can be used to save

program design time and debugging time; and since only active steps are scanned, the program

execution time can be shortened.

6. Continuous Function Chart (CFC): Actually, it is another form of Function Block Diagram (FBD). The

operation order of operation blocks can be customized throughout the program, making it easy to

implement numerous large-scale process operations that are difficult to subdivide. It is widely used in

the continuous control industry.

5.2 Structured Text (ST)

5.2.1 Introduction to the Structured Text Programming Language

Structured Text (ST) is a high-level text language that can be used to describe functions, function blocks,

and program behaviors, and can also describe the behaviors of steps, actions, and transitions in Sequential

Function Charts.

Structured Text Programming Language is a high-level language, similar to Pascal, which is developed

specifically for industrial control applications and is the most commonly used language in CoDeSys. For

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 51

personnel who are familiar with high-level computer language development, the structured text language is

easy to learn and use. It can implement functions such as selection, iteration, and jump statements. In

addition, the structured text language is easy to read and understand, especially when annotated with

meaningful identifiers and comments. In complex control systems, structured text can greatly reduce the

amount of code and make complex system problems simple. Its disadvantage lies in unintuitive debugging

and relatively slow compilation speed. The view of structured text is shown in Figure 5-1.

Figure 5-1 Structured Text

5.2.2 Program Execution Sequence

The execution sequence of the program using structured text is based on the “line number” from top to

bottom, as shown in Figure 5-2. At the beginning of each cycle, the program lines with smaller line numbers

are executed first.

Figure 5-2 Structured Text Program Execution Sequence

5.2.3 Expression Execution Sequence

An expression includes operators and operands. The operands are calculated according to the rules

specified by the operators to obtain the results and return them. Operands can be variables, constants,

register addresses, functions, etc.

[Example 5.1] Expression examples.

a+b+c;

3.14*R*R;

ABS(-10)+var1;

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 52

If there are several operators in an expression, the operators are executed in the conventional order of

precedence: operators with higher precedence are executed before those with lower precedence

sequentially. If there are operators with the same precedence in an expression, they are executed from left

to right in the order they are written. The operator precedence is shown in Table 5-1.

Table 5-1 Operator Precedence

Operator Symbol Priority

Parentheses () Highest

Function call Function name(Parameter list)

Exponentiation EXPT

Negation NOT

Multiplication *

Division /

Modulo MOD

Addition +

Subtraction -

Comparison <, >, <=, >=

Equal =

Not equal <>

And AND

Exclusive or XOR

Or OR Lowest

5.2.4 Instruction Statement

There are five main types of structured text statements, namely assignment statements, function and

function block control statements, selection statements, iteration (loop) statements, and jump statements.

Table 5-2 lists all the statements used in structured text.

Table 5-2 Structured Text Statements

Instruction Type Instruction Statement Example

Assignment statement := bFan:=TRUE;

Function and function

block control

statement

Function

block/function call

name ();

-

Selection statement

IF
IF<Boolean expression>THEN

<statement content>;END_IF

CASE

CASE<condition variable>OF

<value 1>:<statement content 1>;

...

<value n>:<statement content n>;ELSE

<ELSE statement content>;

END_CASE;

Iteration statement

FOR

FOR<variable>:=<initial value>TO<target

value>{BY<step length>}DO

<statement content>

END_FOR;

WHILE
WHILE<Boolean expression>

<statement content>;END_WHILE;

REPEAT

REPEAT

<statement content>UNTIL

<Boolean expression>

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 53

Instruction Type Instruction Statement Example

END_REPEAT;

Jump statement

EXIT EXIT;

CONTINUE CONTINUE;

JMP

<identifier>:

...

JMP<identifier>;

Return statement RETURN RETURN;

NULL statement ; -

1. Assignment statement

The assignment statement is one of the most commonly used statements in structured text. Its function is to

assign the value generated by the expression on its right side to the operand (variable or address) on the left

side. It is represented by “:=”.

The specific format is as follows:

<variable>:=<expression>;

[Example 5.2] Assign values to two Boolean variables: bFan is set to TRUE and bHeater is set to FALSE.

VAR

 bFan: BOOL; bHeater:BOOL;

END_VAR

 bFan:=TRUE;

 bHeater:=FALSE;

The above functions are achieved by using the “:=” assignment statement.

You need to pay attention to the matching of data types when using it. If the data types on both sides of the

assignment operator are different, the data type conversion function should be called. For example, rVar1 is

of Real type, and iVar1 is of Int type. When iVar1 is assigned to rVar1, the conversion function INT_TO_REAL

should be called.

The statement format is as follows.

rVar1:=INT_TO_REAL(iVar1);

There can be multiple statements in one line, for example, arrData[1]:=3;arrData[2]:=12; these two

instructions can be written in one line.

[Example 5.3] There can be multiple data in one line.

arrData1[i]:=iDataInLine1; arrData2[j]:=iDataInLine2;

When a function is called, the function return value is assigned as the value of the expression, which should

be the most recently evaluated result.

[Example 5.4] The return value of the function call is used as the value of the expression.

Str1:=INSERT(IN1:=’CoDe’,IN2:=’Sys’,P:=2);

2. Function and function block control statement

A. Function control statement

The function block control statement is used to call a function. After the function is called, the return value is

directly assigned to the variable as the value of the expression. For example, in the statement

rVar1:=SIN(rData1);, the sine function SIN is called and the return value is assigned to the variable rVar1. The

statement format is as follows.

Variable:=function name (parameter list);

[Example 5.5] Example of a function control statement.

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 54

rResult:=ADD(rData1,rData2);// Use the ADD function to assign the result of rData1 plus rData2 to the

variable rResult.

B. Function block control statement

Function block control statements are used for function blocks. Function block calls are implemented by

instantiating function block names. For example, Timer is the instance name of the TON function block. The

specific format is as follows.

Function block instance name: (function block parameter);

If you need to call a function block in the ST programming language, you can directly enter the instance

name of the function block and assign values or variables separated with commas to each parameter of the

function block in the subsequent brackets. The function block call ends with a semicolon.

For example, call the TON timer function block in the ST programming language. Assuming its instance

name is TON1, the specific implementation is shown in Figure 5-3.

Figure 5-3 Function Block Call in Structured Text

A selection statement selects an expression based on specified conditions to determine which statement it

consists of to be executed. It can be broadly divided into two categories: IF and CASE.

3. Selection statement

A. IF statement

The IF statement is used to implement a single-branch selection structure. Its basic format is as follows.

IF<Boolean expression>THEN

 <statement content>;

END_IF

If the above format is used, the statement content will be executed only when <Boolean expression> is TRUE;

otherwise, the <statement content> of the IF statement will not be executed. The statement content can be

a single statement or a null statement, or multiple statements can be listed in parallel. The statement

expression execution process is shown in Figure 5-4.

Figure 5-4 Execution Process of Simple IF Statement

Boolean

expression

Statement
content

TRUE
FALSE

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 55

[Example 5.6] Use the PLC to determine whether the current temperature exceeds 60°C. If so, always turn on

the fan for heat dissipation. The implementation code is as follows.

VAR

 nTemp:BYTE; (*Current temperature state signal*)

 bFan:BOOL; (*Fan switch control signal*)

END_VAR

 nTemp:=80;

 IF nTemp>60 THEN bFan:=TRUE;

END_IF

B. IF…ELSE statement

Use the IF...ELSE statement to implement the double-branch selection mechanism. Its basic format is as

follows:

IF <Boolean expression> THEN

<statement content 1>;

ELSE

<statement content 2>;

END_IF

As shown in the above expression, the value in <Boolean expression> is first determined: If it is TRUE,

<statement content 1> is executed; if it is FALSE, <statement content 2> is executed. The program execution

process is shown in Figure 5-5.

Figure 5-5 Execution Process of IF ELSE Statement

Boolean

expression

Statement

content 1

TRUE FALSE

Statement

content 2

[Example 5.7] Use the PLC to determine that when the temperature is less than 20℃, turn on the heating

device; otherwise (temperature ≥ 20℃), disconnect the heating device.

IF nTemp<20 THEN

 bHeating:=TRUE;

ELSE

 bHeating:=FALSE;

END_IF

VAR

 nTemp:BYTE; (*Current temperature state signal*)

 bHeating:BOOL; (*Heater switch control signal*)

END_VAR

When there is more than one conditional expression in the program, a nested IF...ELSE statement is required,

that is, a multi-branch selection structure. Its basic format is as follows.

IF<Boolean expression1>THEN

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 56

 IF<Boolean expression2>THEN

 <statement content1>;

 ELSE

 <statement content2>;

 END_IF

ELSE

 <statement content3>;

END_IF

As shown above, another IF...ELSE statement is placed in IF...ELSE to achieve nesting. The following example

illustrates the use of nesting.

The above expression first determines the value in <Boolean expression 1>: If it is TRUE, it continues to

determine the value of <Boolean expression 2>; if it is FALSE, it executes <statement content 3> and returns

to <Boolean expression 2> for determination. If <Boolean expression 2> is TRUE, it executes <statement

content 1>; otherwise, it executes <statement content 2>.

[Example 5.8] When the device enters the automatic mode, if the actual temperature is ＞ 50℃, the fan will

be turned on and the heater will be turned off. When the temperature is ≤ 50℃, the fan will be turned off and

the heater will be turned on. In manual mode, the heater and fan will not work.

VAR

 bAutoMode: BOOL; (*Manual/automatic mode state signal*)

 nTemp:BYTE; (*Current temperature state signal*)

 bFan:BOOL; (*Fan switch control signal*)

 bHeating:BOOL; (*Heater switch control signal*)

END_VAR

IF bAutoMode=TRUE THEN IF

 nTemp>50 THEN

 bFan:=TRUE;

 bHeating:=FALSE;

ELSE

 bFan:= FALSE;

 bHeating:= TRUE;

END_IF

ELSE

 bFan:= FALSE;

 bHeating:=FALSE;

END_IF

C. IF…ELSIF…ELSE statement

In addition, the multi-branch selection structure can also be presented in the following forms. Its specific

format is as follows:

IF <Boolean expression 1> THEN

 <statement content 1>;

ELSIF <Boolean expression 2> THEN

 <statement content 2>;

ELSIF <Boolean expression 3> THEN

 <statement content 3>;

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 57

. . .

ELSE

 <statement content n>;

END_IF

If the expression <Boolean expression 1> is TRUE, only the instruction <statement content 1> is executed,

and no other instructions are executed. Otherwise, determination is started from the expression <Boolean

expression 2> until one of the Boolean expressions is TRUE, and then the statement content corresponding

to this Boolean expression is executed. If the value of the Boolean expression is not TRUE, only the

instruction <statement content n> is executed. The program execution process is shown in Figure 5-6.

Figure 5-6 Execution Process of IF...ELSIF...ELSE Statement

Boolean

expression 1

Boolean

expression 2

Boolean

expression 3

Statement

content 1

Statement

content 2

Statement

content 3

Statement

content n

TRUE

TRUE

TRUE

FALSE

FALSE

FALSE

D. CASE statement

A CASE statement is a multi-branch selection statement that enables the program to select a branch from

multiple branches for execution based on the value of an expression. Its basic format is as follows.

CASE<condition variable>OF

 <value 1>:<statement content 1>;

 <value 2>:<statement content 2>;

 <value 3,value 4,value 5>:<statement content3>;

 <value6..value10>:<statement content4>;

...

 <valuen>:<statement contentn>;

 ELSE

 <ELSEstatement content>;

END_CASE;

The CASE statement is executed in the following mode:

 If the value of the <condition variable> is <value i>, then the instruction <statement content i> is

executed.

 If the <condition variable> does not have any specified value, the instruction <ELSE statement content>

is executed.

 If several values of the condition variable require the same instruction to be executed, the values can

be written one after the other, separated by commas. In this way, the common instruction is executed,

as shown in the fourth line of the above program.

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 58

 If the condition variable needs to execute the same instruction within a certain range, you can write the

initial and final values, separated by two dots. In this way, the common instruction is executed, as

shown in the fifth line of the above program.

[Example 5.9] When the current state is 1 or 5, the device 1 is running and the device 3 is stopped; when the

state is 2, the device 2 is stopped and the device 3 is running; if the current state is between 10 and 20, both

devices 1 and 3 are running. In other cases, devices 1, 2, and 3 are required to stop. The specific

implementation code is as follows:

VAR

 nDevice1,nDevice2,nDevice3:BOOL; (*Device 1..3 switch control signal*)

 nState:BYTE; (*Current state signal*)

END_VAR

CASE nState OF 1,

5:

 nDevice1:=TRUE;

 nDevice3:=FALSE;

2:

 nDevice2:=FALSE;

 nDevice 3:=TRUE;

10..20:

 nDevice1:=TRUE;

 nDevice 3:=TRUE;

ELSE

 nDevice1:=FALSE;

 nDevice2:=FALSE;

 nDevice3:=FALSE;

END_CASE;

The CASE statement execution process is shown in Figure 5-7. When nState is 1 or 5, the device 1 is on and

the device 3 is off; when nState is 2, the device 2 is off and the device 3 is on; when nState is 10-20, the device

1 is off and the device 3 is on; in other cases, devices 1 , 2, and 3 are all off.

Figure 5-7 Execution Process of CASE Statement

nState

Device 1 on

Device 3 off

Device 2 off

Device 3 on

Device 1 on

Device 3 on

Device 1 off

Device 2 off

Device 3 off

Others

10~20

4. Iteration statement

Iteration statements are mainly used for repeatedly executing programs. In CoDeSys, common iterative

statements include FOR, REPEAT, and WHILE statements, which are explained in detail below.

A. FOR loop

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 59

The FOR loop statement is used to calculate an initialization sequence. When a certain condition is TRUE,

the nested statements are repeatedly executed and an iterative expression sequence is calculated. If it is

FALSE, the loop is terminated. Its specific format is as follows.

FOR<variable>:=<initial value>TO<target value>{BY<step size>}DO

 <statement content>

END_FOR;

The execution sequence of the FOR loop is as follows:

 Calculate whether the <variable> is within the range of the <initial value> and the <target value>.

 When the <variable> is less than the <target value>, the <statement content> is executed.

 When the <variable> is greater than the <target value>, the <statement content> is not executed.

 Each time the <statement content> is executed, the value of the <variable> is always increased by the

specified step size. The step size can be any integer value. If the step size is not specified, it defaults to 1.

When the <variable> is greater than the <target value>, exit the loop.

In a sense, the principle of the FOR loop is like a copier. The number of copies to be made is preset on the

copier, which is the condition of the loop. When the condition is met, that is, the actual number of copies is

equal to the set number of copies, copying stops.

The FOR loop is the most commonly used loop statement. It embodies a function of repeating a specified

number of times, but due to different code writing methods, other loop functions can also be implemented.

The following example demonstrates how to use the FOR loop.

[Example 5.10] Use the FOR loop to calculate 2 to the 5th power.

VAR

 Counter:BYTE; (*Loop counter)

 Var1:WORD; (*Output result*)

END_VAR

FOR Counter:=1 TO 5 BY 1 DO

 Var1:=Var1*2;

END_FOR;

Assuming that the initial value of Var1 is 1, the value of Var1 is 32 after the loop ends.

Note: If the <target value> is equal to the limit value of the <variable>, an infinite loop will be entered.

Assume that the type of the counting variable Counter in [Example 5.10] is SINT (-128 to 127). When the

<target value> is set to 127, the controller will enter an infinite loop. Therefore, a limit value cannot be set

for the <target value>.

B. WHILE loop

The WHILE loop is used in a similar way to the FOR loop. The difference between the two is that the end

condition of the WHILE loop can be any logical expression. That is, you can specify a condition, and when

the condition is met, the loop is executed. Its specific format is as follows.

WHILE <Boolean expression>

 <statement content>;

END_WHILE;

The execution sequence of the WHILE loop is as follows:

 Calculate the return value of the <Boolean expression>.

 When the value of the <Boolean expression> is TRUE, the <statement content> is executed repeatedly.

 When the initial value of the <Boolean expression> is FALSE, the instruction <statement content> is not

executed and jumps to the end of the WHILE statement. The execution process is shown in Figure 5-8.

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 60

Figure 5-8 Execution Process of WHILE Statement

Expression

Statemen

t

TRUE

FALSE

The WHILE statement is like controlling a motor in a project: when the “Start” button is pressed (when the

Boolean expression is TRUE), the motor keeps rotating; when the stop button is pressed (when the Boolean

expression is FALSE), the motor stops immediately. The following example demonstrates how to use the

WHILE loop.

Note: If the value of the <Boolean expression> is always TRUE, an infinite loop will be entered, which

should be avoided. The generation of an infinite loop can be avoided by changing the condition of the loop

instruction. For example: Use an incrementing and decrementing counter to avoid an infinite loop.

[Example 5.11] As long as the counter is not zero, the program inside the loop body is always executed.

VAR

 Counter: BYTE; (*Counter*)

 Var1:WORD;

END_VAR

WHILE Counter<>0 DO

 Var1 := Var1*2;

 Counter := Counter-1;

END_WHILE

In a sense, the WHILE loop is more powerful than the FOR loop because the WHILE loop does not need to

know the number of loops before executing the loop. Therefore, in some cases, it is sufficient to use only

these two loops. However, if the number of loops is known, the FOR loop is better because it avoids infinite

loops.

C. REPEAT loop

A REPEAT loop differs from a WHILE loop because it checks the end condition only after the instruction is

executed. This means that the loop will be executed at least once, regardless of the end condition.

Its specific format is as follows.

REPEAT

 <statement content>

UNTIL

 <Boolean expression>

END_REPEAT;

The execution sequence of the REPEAT loop is as follows:

 When the value of the <Boolean expression> is FALSE, the <statement content> is executed.

 When the value of the <Boolean expression> is TRUE, the execution of the <statement content> stops.

 After the first execution of the <statement content>, if the value of the <Boolean expression> is TRUE,

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 61

the <statement content> is executed only once.

Note: If the value of the <Boolean expression> is always TRUE, an infinite loop will be entered, which

should be avoided. The generation of an infinite loop can be avoided by changing the condition of the loop

instruction. For example: Use an incrementing and decrementing counter to avoid an infinite loop.

The following example demonstrates how to use the REPEAT loop.

[Example 5.12] Example of a REPEAT loop. The REPEAT loop stops when the counter reaches 0.

VAR

 Counter: BYTE;

END_VAR

REPEAT

 Counter := Counter+1;

UNTIL

 Counter=0

END_REPEAT

The result of this example is that each program cycle enters the REPEAT loop, and the Counter is BYTE (0–

255), that is, 256 auto-increment operations are performed in each cycle.

As mentioned above, “This means that the loop will be executed at least once, regardless of the end

condition”, so every time the REPEAT statement is entered, the Counter is first 1, and the

Counter:=Counter+1 instruction is executed 256 times in each cycle until the Counter variable is

accumulated to overflow to 0, and then the loop is exited. It is incremented until it overflows, and so on.

5. Jump statement

A. EXIT statement

If the EXIT instruction is used in the FOR, WHILE, and REPEAT loops, the inner loop stops immediately

regardless of the end condition. Its specific format is as follows.

EXIT;

[Example 5.13] Use the EXIT instruction to avoid division by zero when an iterative statement is used.

FOR Counter:=1 TO 5 BY 1 DO INT1:= INT1/2;

IF INT1=0 THEN

 EXIT; (*Avoid division by zero*)

END_IF

 Var1:=Var1/INT1;

END_FOR

When INT1 is equal to 0, the FOR loop ends.

B. CONTINUE Statement

This instruction is an extended instruction of the IEC 61131-3 standard. The CONTINUE instruction can be

used in three loops: FOR, WHILE, and REPEAT.

The CONTINUE statement interrupts the current loop, ignoring the code following it and starting a new loop

directly. When multiple loops are nested, the CONTINUE statement can only cause the loop statement that

directly contains it to start a new loop. Its specific format is as follows.

CONTINUE;

[Example 5.14] Use the CONTINUE instruction to avoid division by zero when an iterative statement is used.

VAR

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 62

 Counter: BYTE; (*Loop counter*)

 INT1,Var1: INT; (*Intermediate variable*)

 Erg: INT; (*Output result*)

END_VAR

FOR Counter:=1 TO 5 BY 1 DO

INT1:= INT1/2;

IF INT1=0 THEN

 CONTINUE; (*Avoid division by zero*)

END_IF

 Var1:=Var1/INT1; (*Executed only when INT1 is not equal to 0*)

END_FOR;

Erg:=Var1;

C. JMP statement

A jump statement can be used to unconditionally jump to the code line marked with a jump identifier. Its

specific format is as follows.

<identifier>:

.

JMP <identifier>;

The <identifier> can be any identifier and is placed at the beginning of a program line. The JMP instruction is

followed by the jump destination, which is a predefined identifier. When the JMP instruction is executed, it

will jump to the program line corresponding to the identifier.

Note: It is necessary to avoid creating an infinite loop, and you can use the IF condition to control the

jump instruction.

[Example 5.15] Use the JMP statement to loop the counter in the range of 0..10.

VAR

 nCounter: BYTE;

END_VAR

Label1:nCounter:=0;

Label2:nCounter:=nCounter+1;

IF nCounter<10 THEN

 JMP Label2;

ELSE

 JMP Label1;

END_IF

Label1 and Label2 in the above example are labels rather than variables, so variable declaration is not

required in the program.

Use the IF statement to determine whether the counter is within the range of 0-10. If it is within the range,

the statement JMPLabel2 is executed, and the program will jump to Label2 in the next cycle and execute the

program nCounter:=nCounter+1 to increase the counter by 1. Otherwise, it will jump to Label1 and execute

nCounter:=0 to clear the counter.

The function in this example can also be implemented using a FOR, WHILE, or REPEAT loop. In general, you

should avoid using the JMP instruction because it will reduce the readability and reliability of your code.

6. RETURN instruction

The RETURN instruction is used to exit a program organization unit (POU). Its specific format is as follows.

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 63

RETURN;

[Example 5.16] Use the IF statement for determination. When the condition is met, end the execution of this

program immediately.

VAR

 nCounter: BYTE;

 bSwitch: BOOL; (*switching signal*)

END_VAR

IF bSwitch=TRUE THEN

RETURN;

END_IF;

nCounter:= nCounter +1;

When bSwitch is FALSE, nCounter is always auto-incremented by 1. When bSwitch is TRUE, nCounter keeps

the value of the previous cycle and exits the program organization unit (POU) immediately.

7. NULL statement

A null statement (;) means that nothing is executed.

8. Annotation

Annotation is a very important part of a program, which makes the program more readable without

affecting its execution. You can add an annotation anywhere in the declaration or execution section of the

ST editor. In the ST language, there are two ways of annotation.

1. A multi-line annotation starts with (* and ends with *). This annotation method allows multi-line

annotations, as shown in Figure 5-9.

2. A single-line annotation starts with “//” and continues to the end of the line, as shown in Figure 5-10.

Please note that CoDeSysV2 does not support this annotation method currently.

Figure 5-9 Structured Text Language

Annotation (Multi-line Annotation)

Figure 5-10 Structured Text Language Annotation

(Single-line Annotation)

5.2.5 Application Examples

[Example 5.17] Hysteresis function block FB_Hystersis.

1. Control requirements

This function block has three input signals, namely the current real-time value input signal, the comparison

setting value input signal, and the deviation value input signal. In addition, an output value is required.

When the output is TRUE, it switches to FALSE only when the input signal IN1 is less than VAL-HYS. When the

output signal is FALSE, the output switches to TRUE only when the input signal IN1 is greater than VAL+HYS.

The input/output variables of the function block FB_Hystersis are defined as follows.

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 64

FUNCTION_BLOCK FB_Hysteresis

VAR_INPUT

 IN1:REAL; // Input signal

 VAL:REAL; // Comparison signal

 HYS:REAL; // Hysteresis deviation signal

END_VAR

VAR_OUTPUT

 Q:BOOL;

END_VAR

Figure 5-11 Hysteresis Process Figure 5-12 Function Block Diagram

IN1

VAL

Q

HYSHYS

0

1

2. Function block programming

The program used by the function block body to judge the input signal is as follows.

IF Q THEN

 IF IN1<(VAL-HYS) THEN

 Q:=FALSE; // IN1 decreases

 END_IF

 ELSIF IN1>(VAL+HYS) THEN

 Q:=TRUE; // IN1 increases

END_IF

3. Function block application

The FB_Hysteresis function block can be used for bit signal control, where IN1 is connected to the process

variable rActuallyValue, VAL is linked to the process setting value rSetValue, and rTolerance is the required

control deviation. The program declaration is as follows.

PROGRAM POU

VAR

 fbHysteresis:FB_Hysteresis; // fbHysteresis is an instance of the FB_Hysteresis function block

 rActuallyValue:REAL; // Actual measurement value

 rSetValue:REAL; // Process setting value

 rTolerance:REAL; // Deviation setting value

 bOutput AT%QX0.0:BOOL; // Bit signal output

END_VAR

The program body is as follows:

fbHysteresis(IN1:=rActuallyValue , VAL:=rSetValue , HYS:=rTolerance , Q=>bOutput);

The above program can also be expressed by the following program, and the result is the same.

fbHysteresis(IN1:=rActuallyValue , VAL:=rSetValue , HYS:=rTolerance); bOutput:=fbHysteresis.Q;

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 65

Figure 5-13 Program Execution Results of Hysteresis Function Block

Figure 5-13 shows the results of actual program execution. In the program, rSetValue is set to 100 and

rTolerance is set to 20. When the value of rActuallyValue increases from 0 to 120, the bOutput signal is set to

TRUE. Then, when rActuallyValue drops to 0, bOutput also becomes FALSE. In theory, when it drops to 80,

bOutput will become FALSE.

[Example 5.18] Time delay function block FB_Delay.

The function block FB_Delay is a time delay function block, which is different from the hysteresis function

block FB_Hystersis. The time that the output signal lags behind the input signal is called time delay. The

controlled objects in the production process are often described by a first-order filter plus a time delay. Here

we only introduce the time delay function block, and will not go into detail about the first-order filter.

The transfer function of time delay is as follows:

Y(s)=−sτX(s)

Assuming the sampling cycle is Ts, after discretization, we get:

Y(k)=X(k−N)

Where X is the input signal of time delay; Y is the output signal of time delay. Assuming that the sampling

cycle used for discretization is Ts, the ratio of the time delay τ to the sampling cycle Ts is the lag number N.

 Variable declaration of the function block FB_Delay

The program uses an array to store input signals, and the array stores sampling data at different times, that

is, the first cell stores the sampling value at the time 1×Ts, and the i-th cell stores the sampling value at the

time i×Ts. The integer value of the ratio of the time delay τ to the sampling cycle Ts is N (represented by N

after the decimal part of N is removed). Therefore, if the input signal is stored in the Nth cell at a certain

moment, the output signal after the time delay should be output from the first memory cell.

FUNCTION_BLOCK FB_Delay

VAR_INPUT

 IN:REAL; // Input signal

 bAuto: BOOL; // Automatic/manual flag signal

 tCycleTime:TIME; // Sampling cycle

 tDelayTime:TIME; // Time delay

END_VAR

VAR_OUTPUT

 rOutValue:REAL; // Output after time delay processing

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 66

END_VAR

VAR

 N:INT; // Lag number

 arrValue:ARRAY[0..2047] OF REAL; // First-in-first-out array stack

 i:INT; // Array subscript, used for input

 j:INT; // Array subscript, used for output

 fbTrig:R_TRIG; // Convert the automatic signal into a pulse

 fbTon:TON;

END_VAR

After filling in the above input and output parameters, call the function block diagram through the graphical

programming language. The schematic effect diagram is shown in Figure 5-14.

Figure 5-14 FB_Delay Function Block Diagram

 Program body of the Function block FB_Delay

N:=TIME_TO_INT(tDelayTime)/TIME_TO_INT(tCycleTime);

fbTrig(CLK:= bAuto);

IF fbTrig.Q THEN

 i:=N;

 j:=0;

END_IF

fbTon(IN:= NOT fbTon.Q , PT:=tCycleTime);

IF fbTon.Q AND bAuto THEN

 i:=(i+1)MOD 2000;

 arrValue[i]:=i;

 j:=(j+1)MOD 2000;

 rOutValue:=arrValue[j];

END_IF

The function block body uses two subscript windows to manage the access and output of input and output

signals. The input signal data is stored at the i-th subscript address of the array X, and the initial value is

equal to the lag number. The output signal is at the j-subscript address of the array X, and the initial output

value is equal to 0. The modulo method is used to determine the storage and output address each time, and

after each operation, the original address is increased by 1. It is ensured that the next time the operation is

executed, the input of this time and the input signals of the previous N times are stored as the output of this

time.

The number of array memory cells determines the size of the time delay and is related to the sampling cycle.

The larger the time delay is and the smaller the sampling cycle is, the more memory cells are required.

Generally, the lag number N can be made larger than the total number of memory cells according to the size

of the application.

In this example, the lag number N is required to be less than 2000 (the array length is 2048). In addition, the

array memory cell starts from 0, and the actual application starts from the address 0. Figure 5-15 shows the

relationship between the input and output windows.

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 67

Figure 5-15 Relationship between Input and Output Windows

0 N 1999

1999...th storage

2000...th storage
1st, 2001...th storage

kth, k+2001...th storage

1999...th output
kth, k+2001...th storage

1st, 2001...th output

2001...th output

X

N

Notes on using the function block FB_Delay:

 The lag number N is related to the time delay and the sampling cycle. The signal of switching from the

running state to the auto state is used as the pulse signal for setting the initial value in the program.

 This function block can be combined with the first-order filter link to simulate the actual production

process and conduct control system simulation research.

[Example 5.19] Calculate maximum, minimum, and average values.

In some industrial controls, it is often necessary to calculate the average, maximum, and minimum values of

several measured values. The following uses the structured text programming language to implement such

an application.

1. Control requirements

It is required to measure the temperatures of 32 points in a kiln. The maximum, minimum, and average

temperature values of these 32 points need to be calculated.

2. Programming

The maximum, minimum, accumulated total, and average values are defined in the program respectively.

The specific variable definitions are as follows.

PROGRAM PLC_PRG

VAR

 rMaxValue:REAL; // Maximum

 rMinValue:REAL; // Minimum

 rSumValue:LREAL; // Accumulated total

 rAvgValue:REAL; // Average

 arrInputBuffer AT%IW100 :ARRAY[1..32] OF REAL; // Input source data

 i:INT;

END_VAR

The program body is as follows, using the FOR...DO statement to scan all input channels, calculate the

average, maximum, and minimum values, and also calculate the total value.

rSumValue:=0;

FOR i:=1 TO 32 BY 1 DO

rSumValue:=REAL_TO_LREAL(arrInputBuffer[i])+rSumValue;

 IF arrInputBuffer[i]> rMaxValue THEN

 rMaxValue:=arrInputBuffer[i];

 END_IF

 IF arrInputBuffer[i]< rMinValue THEN

 rMinValue:=arrInputBuffer[i];

 END_IF

END_FOR;

rAvgValue:=rSumValue/32;

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 68

5.3 Ladder Diagram (LD) and Function Block (FBD）

5.3.1 Introduction to Ladder Diagram and Function Block Diagram Programming

Languages

Two graphical programming languages are defined in the IEC 61131-3 standard: namely Ladder Diagram (LD)

and Function Block Diagram (FBD). The LD programming language uses a series of rungs to form a ladder

diagram to represent the relationship between variables in the industrial control logic system. The FBD

programming language uses a series of function blocks to represent the main body of a program

organization unit.

 Ladder Diagram (LD)

The ladder diagram originated in the United States and was originally based on a graphical representation

of relay logic for programming programmable logic controllers (PLCs). It is one of the most widely used

graphical programming languages for PLC programming.

The basic structure of a ladder diagram is as follows:
1. Power rail: The left power rail is nominally the start point of power flow; while the right power rail is the

end point of power flow. The power flows from left to right along the horizontal rungs, providing power

through various contacts, functions, function blocks, coils, etc.

2. Contact and coil: A contact represents the state of a Boolean variable (such as the state of a switch);

while a coil represents the state of an actual device (such as the startup state of a motor). Each contact

and coil corresponds to a memory cell in the PLC memory.

3. Function and function block: It corresponds to the functions or function blocks in the standard library

of IEC1131-3 or defined by users.

Ladder Diagram logic solution: According to the state and logical relationship of each contact in the ladder

diagram, the state of the programming element corresponding to each coil in the diagram is found. This

process is called the logic solution of the ladder diagram.
Soft relay: In the ladder diagram, some programming elements use the names of traditional relays, such as

coils and contacts, but they are actually memory cells (soft relays). Each soft relay corresponds to a memory

cell of the image register in the PLC memory.

TRUE/ON state: If the memory cell is “TRUE”, the coil of the corresponding soft relay is “energized”, the

normally open contact is engaged, and the normally closed contact is disengaged.

FALSE/OFF state: If the memory cell is "FALSE", the state of the coil and contact of the corresponding soft

relay is opposite to the above.

 Function Block Diagram (FBD)

Function block diagrams are used to describe functions, function blocks, and program behaviors, and can

also describe the behaviors of steps, actions, and transitions in Sequential Function Charts. A function block

diagram is very similar to a signal flow diagram in an electrical diagram. In a program, it can be seen as the

flow of information between two process elements. Function block diagrams are widely used in the field of

process control.

Function blocks are represented by rectangular blocks. Each function block has at least one input terminal

on the left side and at least one output terminal on the right side. The type name of a function block is

usually written inside the block, but the instance name of a function block is usually written at the top of the

block. The input and output names of a function block are written in the corresponding places of the input

and output points in the block.

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 69

5.3.2 Program Execution Sequence

The execution sequences of ladder diagram and function block diagram are similar, both executed from left

to right and from top to bottom, as shown in Figure 5-16.

Figure 5-16 Program Execution Sequence

Bus: The ladder diagram uses a network structure which is bounded by the left bus. When analyzing the

logical relationship of the ladder diagram, in order to learn from the analysis method of the relay circuit

diagram, we can imagine that there is a DC power supply voltage between the left and right bus (left bus and

right bus), positive on the left and negative on the right, and there is an “energy flow” from left to right

between the bus. The right bus is not displayed.

Rung: It is the smallest unit in the ladder diagram network structure. A logic-related network starting from

the input condition to a coil is called a rung. In the editor, rungs are arranged vertically. In CoDeSys, each

rung is represented by a label on the left, contains input and output instructions, and is composed of logical

or arithmetic expressions, programs, and jump, return, or function block call instructions. To insert a rung,

you can use the insert instruction or drag it from the Toolbox. Elements contained in a rung can be copied or

moved by dragging and dropping them in the editor. When the ladder diagram is executed, it starts from the

rung with the smallest label, determines the state of each element from left to right and the states of the link

elements on the right, and executes one by one to the right. The execution results are output by the

execution control element. Then it proceed to the next rung. Figure 5-16 shows the execution process of a

ladder diagram.

Energy flow: The bold blue line on the left side of Figure 5-16 is the energy flow, which can be understood

as an imaginary "conceptual current" or "power flow" flowing from left to right. This direction is consistent

with the order of logical operations when the user program is executed. Energy flow can only flow from left

to right. Using the concept of energy flow can help us better understand and analyze ladder diagrams.

Branch: When a branch appears in a ladder diagram, the state of each graphical element is analyzed in the

same order from top to bottom and from left to right. The states of the link elements on the right side of the

vertical link elements are determined according to the above-mentioned relevant regulations, so as to

execute the evaluation process one by one from left to right and from top to bottom. In ladder diagrams,

evaluation without feedback paths is not very clear. All external input values associated with these contacts

must be evaluated before each rung.

5.3.3 Execution Control

Jump and Return

When the jump condition is met, the program jumps to the rung marked with Label and starts execution

until this part of the program runs to RETURN, then returns to the original rung and continues execution. Its

structure diagram is shown in Figure 5-17.

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 70

Figure 5-17 Jump Instruction Execution Process

When the program is executed to Label1 on the left side of Figure 5-17, the program starts to execute the

jump and jumps directly to the right side of Figure 5-17 to find the program segment marked with Label1,

and then starts executing the following program until the program runs to RETURN. At this time, the jump

program is completed and returns to the main program loop on the left side of the figure.

The jump and return instructions using ladder diagrams in CoDeSys are shown in Figure 5-18.

[Example 5.20] Example of program execution using a jump instruction.

Figure 5-18 Execution of a Jump Instruction

As shown in Figure 5-18, when bInput1 is set to TRUE, the main program executes the jump statement.

According to Label1, the program jumps to the Label1 program segment in Rung 3. It is not difficult to see

from the figure that although bInput3 in Rung 2 is set to ON, bOutput2 will never be set to TRUE because the

program directly skips the statement. bOutput2 will be TRUE only if bInput1 is FALSE and bInput3 is TRUE.

5.3.4 Link Element

The ladder diagram language in IEC1131-3 reasonably absorbs and draws lessons from the ladder diagram

languages f various PLC manufacturers, and uses the basically consistent graphic symbols with those of

various PLC manufacturers. The view of the ladder diagram editor is shown in Figure 5-19. The main graphic

symbols in IEC 61131-3 include the following.

 Basic connection: power rails, link elements

 Contacts: normally open contacts, normally closed contacts, positive transition-sensing contacts,

negative transition-sensing contacts

 Coils: general coils, negated coils, set (latch) coils, reset (unlatch) coils, holding coils, set holding coils,

reset holding coils, positive transition-sensing coils, negative transition-sensing coils

 Functions and function blocks: standard functions and function blocks as well as user-defined function

blocks

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 71

Figure 5-19 Ladder Diagram Editor

5.3.4.1 Line Element

1. Power rail (bus)

The graphic element of a power rail in a ladder diagram is also called bus. Its graphic representation is

located on the left side of the ladder diagram, and it can also be called the left power bus. The left bus graph

is shown in Figure 5-20.

Figure 5-20 Left Bus

2. Connecting line

In a ladder diagram, each graphic symbol is connected by a connecting line. The graphic symbols of

connecting lines include horizontal lines and vertical lines, which are the most basic elements of a ladder

diagram. The horizontal and vertical connecting lines are shown in Figure 5-21.

Figure 5-21 Connecting Line

a) Horizontal

connecting line

b) Vertical connecting

line

3. Transmission rules for link elements

The state of a link element is transmitted from left to right, realizing the flow of energy. The state

transmission follows the rules below: The state of the link element connected to the left power rail is TRUE

at any time, which indicates that the left power rail is the start point of the energy flow. The right power rail

is analogous to zero potential in an electrical diagram.

A horizontal link element shall be indicated by a horizontal line. A horizontal link element transmits the state

of the element on its immediate left to the element on its immediate right.

A vertical link element is always connected to one or more horizontal link elements, that is, the vertical link

element shall consist of a vertical line intersecting with one or more horizontal link elements on each side.

The state of the vertical link element is represented by the state or operation of each horizontal link element

on its left side.

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 72

Therefore, the state of the vertical link shall be:

FALSE if the states of all the attached horizontal link elements to its left are FALSE;

TRUE if the state of one or more of the attached horizontal link elements to its left is TRUE.

The state of the vertical link element shall be transmitted to all of the attached horizontal link elements on

its right, but shall not be transmitted to any of the attached horizontal links on its left.

[Example 5.21] Examples of link elements and their state transmission.

Figure 5-22 Examples of Link Elements and Their States

Figure 5-22 shows examples of link elements and their states. The link element 1 is connected to the left

power rail in a TRUE state. The link element 2 is connected to the link element 1 and its state is transmitted

from the link element 1, so its state is TRUE. The link element 3 is a vertical link element and connected to

the horizontal link element 1 in a TRUE state.

The link elements 2 and 3 transmit the states of link elements 4 and 5 respectively. Since the variables

bInput2 and bInput3 corresponding to graphic elements 4 and 5 are normally open contacts, the states of

link elements 6 and 7 become FALSE after being transmitted by the graphic elements; the states of all the

link elements on the left side of the link element 8 are FALSE.

The input and output data types of a link element must be the same. In the standard, the data types of

graphic elements such as contacts and coils are not limited to the Boolean type. Therefore, the input and

output data types of a link element must be the same to ensure correct state transmission.

5.3.4.2 Rung

Rungs are the basic entities of LDs and FBDs. In the LD/FBD editor, rungs are arranged in numerical order.

Each rung starts with a label on the left and has a structure consisting of logical or arithmetic expressions,

programs, functions, and function block call, jump, or return instructions. The schematic diagram of rungs is

shown by the red shaded part in Figure 5-23. The rungs are arranged in sequence by serial number.

Figure 5-23 Rung View

Rung annotation: A rung can also be assigned a title, annotation, and label. The title and annotation areas

can be enabled or disabled via the “Options” → “FBD, LD, and IL Editor” dialog box, as shown in Figure 5-24.

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 73

Figure 5-24 Rung Title, Annotation, and Label Functions

If the above option is activated, you can open an editable field for the title by clicking below the upper

border of the rung with the mouse. If you want to enter an annotation, you need to open the corresponding

editable field below the title field. Annotations can be made in multiple lines. You can start a new line by

pressing the Enter key, and terminate the input of annotation text by pressing [Ctrl]+[Enter]. Figure 5-25

shows how to add a rung title and annotation.

Figure 5-25 Rung Title and Annotation

Rung title: You can switch to the “Annotation State” via “Switch Rung Annotation State”. Then, the rung will

be displayed for annotation and will not be executed.

Rung branch: You can create a “sub-rung” by inserting “ ”in the toolbox, as shown in Figure

5-26, in which the branch function is used.

Figure 5-26 Create Sub-rungs through the Branch Function

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 74

5.3.4.3 Label

A label is an optional identifier and its address can be determined when a jump is defined. It can contain any

characters.

In the rung area, each FBD, LD, or IL rung has a text entry field to define a label. A label is an optional

identifier for a rung that can be addressed when a jump is defined, and it can contain any sequence of

characters.

Use in the FBD

If you make a right-click in a blank space in the rung area and select “Insert Label”, as indicated by 1 in Figure

5-27, Label: will pop up in 2 and you can edit it.

Figure 5-27 Add a Rung Label

5.3.4.4 Contact

1. Contact type

A contact is a graphic element which transmits a state to the horizontal link element on its right side in a

ladder diagram. The contact in the ladder diagram follows the contact terminology in an electrical diagram

and is used to indicate the state change of a Boolean variable.

Contacts can be divided into normally open contacts (NOs) and normally closed contacts (NCs). Normally

open contacts are disengaged under normal operating conditions and their state is FALSE. Normally closed

contacts are engaged under normal operating conditions and their state is TRUE. Table 5-3 lists commonly

used graphic symbols of contacts in CoDeSys ladder diagrams and their descriptions.

Table 5-3 Graphic Symbols and Descriptions of Contact Elements

Type
Graphic

Symbol
Description

Normally Open

Contact

If the current Boolean variable value corresponding to the contact is

TRUE, the contact is engaged; if the state of the link element on the left

side of the contact is TRUE, the state TRUE is transmitted to the right

side of the contact, making the state of the link element on the right

side TRUE. Conversely, when the Boolean variable value is FALSE, the

state of the right link element is FALSE.

Normally

Closed Contact

If the current Boolean variable value corresponding to the contact is

FALSE, the normally closed contact is engaged. If the state of the link

element on the left side of the contact is TRUE, the state TRUE is

transmitted to the right side of the contact, making the state of the link

element on the right side TRUE. Conversely, when the Boolean variable

value is TRUE, the contact is disengaged and the state of the right link

element is FALSE.

Insert Right

Contact

Multiple contacts can be connected in series by inserting contacts on

the right side. When the multiple contacts in series are all engaged,

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 75

Type
Graphic

Symbol
Description

the last contact can transmit the TRUE state.

Insert Normally

Open Contact

in Parallel

Multiple contacts can be connected in parallel, and normally open

contacts can be inserted in parallel on the lower side of the contacts.

Only one of two parallel contacts needs to be TRUE

for the parallel line to transmit the TRUE state.

Insert Normally

Closed Contact

in Parallel

Multiple contacts can be connected in parallel, and normally closed

contacts can be inserted in parallel on the lower side of the contacts. A

normally closed contact is defaulted to

engaged. If the current Boolean variable value corresponding to the

contact is FALSE and the state of the link element on the left is TRUE,

the right side of the parallel contact transmits the TRUE state.

Insert Upper

Normally Open

Contact in

Parallel

Multiple contacts can be connected in parallel, and normally open

contacts can be inserted in parallel on the upper side of the contacts.

Only one of two parallel contacts needs to be TRUE

for the parallel line to transmit the TRUE state.

2. State transmission rules

Based on the state of a contact and the state of the link element on the left side of the contact, the state of

the graphic symbol on the right side can be determined according to the following rules.

When the state of the graphic element on the left side of the contact is TRUE, its state can be transmitted to

the graphic element on the right side of the contact according to the following principles:

 If the state of the contact is TRUE, the state of the graphic element on its right side is TRUE.

 If the state of the contact is FALSE, the state of the graphic element on its right side is FALSE.

When the state of the graphic element on the left side of the contact is FALSE, no matter what the state of

the contact is, its state cannot be transmitted to the graphic element on its right side, that is, the state of the

graphic element on its right side is FALSE.

When the graphic symbol on the left side of the contact changes from FALSE→TRUE, its associated variables

also change from FALSE→TRUE, and the state of the graphic symbol on the right side of the contact changes

from FALSE→TRUE, remains TRUE for one cycle, and then becomes FALSE, which is called rising edge

triggering.

When the graphic symbol on the left side of the contact changes from TRUE→FALSE, its associated variables

also change from TRUE→FALSE, and the state of the graphic symbol on the right side of the contact changes

from TRUE→FALSE, remains FALSE for one cycle, and then becomes TRUE, which is falling edge triggering.

5.3.4.5 Coil

1. Coil type

A coil is a graphic element in a ladder diagram. The coil in the ladder diagram follows the coil terminology in

an electrical diagram and is used to indicate the state change of a Boolean variable.

According to different characteristics of coils, they can be divided into momentary coils and latched coils,

and latched coils are further divided into set coils and reset coils. Table 5-4 lists commonly used graphic

symbols of coils in CoDeSys ladder diagrams and their descriptions.

Table 5-4 Graphic Symbols and Descriptions of Coil Elements

Type
Graphic

Symbol
Description

Coil
The state of the left link element is transmitted to the associated Boolean

variable and the right link element. If the state of the link element on the

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 76

Type
Graphic

Symbol
Description

left side of the coil is TRUE, the Boolean variable of the coil is TRUE;

otherwise, it is FALSE.

Set Coil

There is an S in the coil. When the state of the left link element is TRUE, the

Boolean variable of the coil is set and remains set until it is reset by the

reset coil.

Reset Coil

There is an R in the coil. When the state of the left link element is TRUE, the

Boolean variable of the coil is reset and remains reset until it is set by the

set coil.

2. Coil state transmission rules

A coil is a graphic element in a ladder diagram that transmits the state of the horizontal or vertical link

element on its left side to the horizontal link element on its right side without modification. During the

transmission process, the states of the left associated variables and direct addresses are stored in

appropriate Boolean variables. Conversely, a negated coil is a graphic element in a ladder diagram that first

inverts the state of the horizontal or vertical link element on its left side and then transmits it to the

horizontal link element on its right side.

A set/reset coil maintains the state of the horizontal link element on its left side for one evaluation cycle at

the moment when the state changes from FALSE to TRUE or from TRUE to FALSE, and transmits the state of

the horizontal link element on its left side to the horizontal link element on its right side at other times.

A rising edge/falling edge jump coil maintains its associated variable for one evaluation cycle at the moment

when the state of the horizontal link element on its left side changes from FALSE to TRUE or from TRUE to

FALSE, and transmits the state of the horizontal link element on its left side to the horizontal link element on

its right side at other times.

There is no rule on the right side that only one element can be linked, so you can expand elements on the

right side to simplify the program. For example, other coils can be connected in parallel on the right side, as

shown in [Example 5.22].

[Example 5.22] Transmission of coil state.

Figure 5-28 Transmission of Coil State

Figure 5-28 shows the coil state transmission process. In the figure, when the contact bInput is closed, the

state of the link element on its right side is TRUE, and it is connected to the coils bOutputVar1 and

bOutputVar2 after passing through the horizontal and vertical link elements respectively, and also sets their

states to TRUE.

3. Double-coil

The so-called double-coil means that the same coil is used twice or more in the user program. This

phenomenon is called double coil output. In Figure 5-29 a), there are two coils with the output variable

"bOutputVar1". In the same scan cycle, the logical operation results of the two coils may be exactly opposite,

that is, one coil of the variable bOutputVar1 may be “powered on” while the other may be “powered off”. For

the control of the variable bOutputVar1, what really works is the state of the last coil of the variable

bOutputVar1.

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 77

In addition to affecting the external load, the on/off state of the coil of the variable bOutputVar1 may also

affect the state of other variables in the program through its contact. Therefore, double coil output should

be avoided as much as possible, and the parallel connection method as shown in Figure 5-29 b) should be

used to solve the double coil problem.

Figure 5-29 Double Coil Example

a) Double coil b) Double coil avoidance

As long as it can be ensured that only the logical operation corresponding to one of the coils is executed in

the same scan cycle, such double coil output is allowed. The following 3 situations allow double coil output.

 In two program segments with opposite judgment conditions (such as automatic program and manual

program), double coil output is allowed, that is, the coil of the same variable can appear once in each of

the two program segments. In fact, the PLC only executes one coil output instruction of the double coil

element in the program segment being processed.

 In two subprograms with opposite calling conditions (such as automatic program and manual

program), double coil output is allowed. That is, the coil of the same variable can appear once in each

of the two subprograms. The instructions in a subprogram are only executed when the subprogram is

called, and are not executed if the subprogram is not called.

 To avoid double coil output, the set/reset instruction can be used multiple times for the same variable.

5.3.4.6 Function and Function Block Calls

If you want to call a function or function block, you must use an operation block, which can represent all

POUs, including function blocks, functions, and even programs. Function blocks include timers, counters,

etc., and can be inserted into FBD and LD rungs. Operation blocks can have arbitrary inputs and outputs. For

detailed description of graphic symbols of functions and function blocks, see Table 5-5.

Users can insert function blocks and programs along with contacts and coils. In the network, they must have

one input and one output with Boolean values and can be used like contacts at the same position, that is, on

the left side of the LD network.

Table 5-5 Graphic Symbols and Descriptions of Function and Function Block

Type
Graphic

Symbol
Description

Insert

Operation

Block

Insert a function or function block, and select the function or function

block you want to use with the mouse according to the pop-up dialog

box

. It is suitable for users who are not familiar with functions and function

blocks.

Insert Null

Operation

Block

Insert a rectangular block directly and directly enter the name of the

function or function block at the "???” position. It is suitable for

users who are familiar with functions and function blocks.

Insert

Operation

Block

with EN/ENO

Only when EN is TRUE will the function or function block be executed

and allowed to transmit the state downstream. It is suitable for users

who are not familiar with functions and function blocks.

Insert Null Insert a rectangular block with EN/ENO and directly enter the name of

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 78

Type
Graphic

Symbol
Description

Operation

Block

with EN/ENO

the function or function block at the "???” position.

Only when EN is TRUE will the function or function block be executed

and allowed to transmit the state downstream. It is suitable for users

who are familiar with functions and function blocks.

The ladder diagram programming language supports calling functions and function blocks. When calling

functions and function blocks, please note the following:

1. In a ladder diagram, functions and function blocks are represented by a rectangular box. A function can

have multiple input parameters but only one return parameter. A function block can have multiple

input parameters and multiple output parameters.

2. The inputs are listed on the left side of the rectangle box while the outputs are listed on the right side of

the rectangle box.

3. The names of functions and function blocks are displayed in the upper middle part of the box. Function

blocks need to be instantiated, and the instance names are listed in the upper middle part outside the

box. The instance name of a function block is used as its unique identifier in the project.

4. To ensure that energy can flow through a function or function block, each called function or function

block should have at least one input and output parameter. To execute a connected function block, at

least one Boolean input must be connected to the vertical left power rail via a horizontal rung.

5. When calling a function block, you can directly fill in the actual parameter value at the external

connecting line of the function block of the internal formal parameter variable name.

[Example 5.23] Actual parameter setting for a function block call.

In Figure 5-30, the TON delayed ON function block is called, where TON_1 is the instance name of the

instantiated function block TON. The input formal parameter PT of the function block is set to t#5s. Q and ET

are output formal parameters. When output formal parameters are not needed, such as ET in the example,

the variable can be left unconnected.

Figure 5-30 Actual Parameter Setting for a Function Block Call

It can be seen that the output parameter Q of the function block TON is connected to the coil bWorking. It

means that when the contact bStartButton is TRUE and bEmg_Stop is FALSE for more than 5 s, bWorking is

TRUE. When bEmg_Stop is off, namely TRUE, bWorking is FALSE.

If there are no dedicated input and output parameters for EN and ENO, the functions and function blocks are

automatically executed and their states are transmitted downstream. In [Example 5.23], a function block

with EN and ENO is called. In the Toolbox, you can choose to insert a standard operation block “ ”,

or a function block “ ” with EN/ENO. You can drag and drop to copy or move it in the

editor. Figure 5-31 a) and b) are diagrams comparing the standard operation block and the operation block

with EN/ENO.

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 79

Figure 5-31 Comparison of Two Types of Operation Blocks in the FBD

a) Standard operation block b) Function block with EN/ENO

In Figure 5-31 a), as long as the front-end conditions are met, the function block will be executed directly,

while in b), the function block will be executed only when EN is TRUE. Otherwise, even if all the front-end

conditions are met, the function block will not be executed by the program. If the input signal of EN in b) is

set to the constant "TRUE", the effects of a) and b) are exactly the same.

[Example 5.24] Call a function block with EN and ENO.

Figure 5-32 shows a function block with EN and ENO. the Boolean input bEnable is used to start the counter

function block CTU_0, and bWorking is used as the state variable signal that the function block is enabled.

Figure 5-32 Call of a Function Block with EN and ENO

It can be seen that when bCounter has a rising edge trigger signal, the formal parameter output variable CV

is incremented by 1.

 When EN is FALSE, the operation defined by the function block body is not executed and the value of

ENO is also FALSE accordingly.

 When the value of ENO is TRUE, it means that the function block is being executed.

5.3.4.7 Assignment

The assignment function can be understood as the assignment of inputs/outputs to operation blocks. In the

Toolbox, you can choose to insert the “ ” tool and drag it to the editable field of the program.

Then, a small gray diamond pattern will appear at the input and output interface corresponding to the

operation block in the editable field. Readers can directly drag it to the interface. After insertion, the text

string “???” can be replaced with the name of the variable to be assigned, or you can use the button to

call the “Input Assistant”. At this time, the assignment of the input/output interface variables of the

operation block has been completed. The assignment view is shown in Figure 5-33.

Figure 5-33 Assignment View

5.3.4.8 Jump Execution

Jump execution control element: A jump execution control element is represented by a Boolean signal line

terminated in a double arrowhead. The signal line for a jump condition originates at a Boolean variable, at a

Boolean output of a function or function block, or on the power flow line of a ladder diagram.

Jumps are divided into conditional jumps and unconditional jumps.

When a jump signal originates at a Boolean variable or at a Boolean output of a function or function block,

the jump is a conditional jump. A jump occurs only when program control executes to the jump signal line of

the designated network label and the Boolean value is TRUE.

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 80

If the jump signal line originates on the left power rail line of a ladder diagram, the jump is unconditional. In

the function block diagram programming language, if a jump occurs when the Boolean constant is 1, the

jump is also unconditional. The graphic symbols of jump control elements are listed in Table 5-6.

Table 5-6 Graphic Symbols of Jump Control Elements

Execution Control Type
Graphic Symbol of Execution

Control Element
Description

Unconditional

Jump

LD language
Unconditional jump to Label

directly
FBD language

Conditional

Jump

LD language
When bInput is 1, conditional jump

to Label

FBD language

Conditional

Return

LD language
When bInput is 1, the conditional

jump returns
FBD language

Jump target: In a program organization unit, the jump target is a label within the program organization unit

where the jump occurs. It indicates that after the jump occurs, the program will start execution from this

target.

Return: Return is divided into two types: conditional return and unconditional return.

The conditional return is applicable to functions and function blocks. When the Boolean input of the

conditional return is TRUE, program execution will return to the called entity. When the Boolean input is

FALSE, program execution will continue in the normal manner, and an unconditional return is reached by

the physical end of the function or function block. As shown in Table 5-6, connecting the RETURN statement

directly to the left rail indicates an unconditional return.

Configuration of jump execution: Insert “→” in the Toolbox, and after inserting → representing a jump,

replace the automatically entered “???” with the label of the jump target. You can directly enter the label of

the target or click the browse key “ ” to use the Input Assistant to select one, as shown in Figure

5-34. The system will automatically filter the available labels for users to choose.

Figure 5-34 Jump Input Assistant

[Example 5.25] Jump statement example.

In cylinder control, the extension signal of the cylinder solenoid valve is bExtrent. If the feedback signal

bExtrented_Sensor1 of the extension sensor is not received within 5 s after the extension signal bExtrent is

sent, it jumps to the alarm program, and the variable declaration and program are as follows.

PROGRAM PLC_PRG

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 81

VAR

 bExtrent:BOOL;

 bExtrented_Sensor1:BOOL;

 fb_TON:ton;

END_VAR

Figure 5-35 Jump Statement Example Program

Figure 5-35 shows an example program for the jump statement. Finally, when the output signal Q of the

fb_TON function block and the bExtrent signal are met at the same time, the output signal Alarm of the AND

logic is set to TRUE.

5.3.5 Application Examples

[Example 5.25] Flashing signal light.

Control requirements

Use timers and logical functions to construct a flashing signal light system. This circuit output can turn the

signal light on/off at a certain cycle.

Programming

The program realizes the control requirements of the flashing signal light system by switching bLamp and

bLamp1 on/off alternately. The program is implemented by using the ladder diagram shown in Figure 5-36.

Users can use t_SetValue to set the ON/OFF switching time, such as 500 ms. The specific variable definition

is as follows.

PROGRAM

PLC_PRG VAR

 fb_TON:ton; //TimeDelay

 t_SetValue:TIME:=t#500ms; //SetTime

 bLamp AT%QX0.0:BOOL; //Output0

 bLamp1 AT%QX0.1:BOOL; //Output1

END_VAR

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 82

Figure 5-36 Ladder Diagram Program for a Flashing Signal Light System

The output effect is shown in Figure 5-37. The output curves of bLamp and bLamp1 are exactly opposite,

and the time for their state switching is exactly 1 s.

Figure 5-37 Output Curves of Flashing Signal Lights

[Example 5.26] pH control system.

Control requirements

pH control is often required in wastewater treatment or fermentation processes. Since the controlled

objects of the pH control system have nonlinearity and time delay behaviors, nonlinearity and time delay

compensation control schemes are commonly used. However, the following control strategy can also be

used in a simple control scheme: when the measured pH value exceeds the set acidity value, wait for a

certain period of time and then add alkaline liquid for a certain period of time. When the pH exceeds the set

value, the contact PHH is closed. Conversely, when it is less than the set value, the alkali addition valve is

bValves1. The control scheme is “Look and Adjust”.

When the pH is controlled in the linear region, it can be assumed that the change in pH during the control

process is linear, that is, when alkali or acid is added for neutralization, the change in pH is linear. Generally,

when the difference between the set upper limit SPH and the set lower limit SPL is small, a linear

relationship is established.

Assuming the time required for the pH value to change from SPL to SPH during the fermentation process is t,

and the time required for the pH value to change from SPH to SPL after adding alkali is t2, the time delay can

be set to t1=t/2, and the time for the alkali addition control valve to open is t2.

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 83

The actual set value for pH control SP = (SPH + SPL) / 2. Reducing the difference between SPH and SPL is

beneficial to improving control accuracy.

The startup condition of the alkali addition control valve bValves1 is the expiration of the set time of the

timer t1; therefore, t1.Q is used as the startup condition in the program. The stop condition of the alkali

addition control valve bValves1 is the expiration of the set time of t2; therefore, t2.Q is used as the stop

condition in the program.

The startup condition of the timer t1 is that pH reaches the set value SP; therefore, the rising edge of the

contact PHH is used to trigger the fb_Trigger function block, and its signal is temporarily stored by the RS

function block. The startup condition of the timer t2 is the expiration of the set time of the timer t1.

Programming

According to the above control requirements, the pH value control program is written using the ladder

diagram programming language, and its variable declaration and program are shown in the figure. Two

timers are used in the program.

PROGRAM PLC_PRG

VAR

 t1,t2:ton; // Timers t1, t2

 PHH:BOOL; // Set value exceeding signal

 bValves1 AT%QX0.0 :BOOL; // Alkali addition control valve

 fb_R_Trig:R_Trig;

 fb_RS_0,fb_RS_1:RS;

END_VAR

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 84

5.4 Instruction List (IL)

Instruction List (IL) is a low-level programming language defined in the IEC 61131-3 standard and resembles

assembly. It is easy to learn and simple to implement, and can be downloaded directly to the PLC. However,

IL lacks effective tools for solving large and complex control problems, so it is rarely used in these scenarios.

Nevertheless, as a basic programming language, IL occupies an important position in PLC programming due

to its versatility and simplicity.

5.4.1 Introduction to the Instruction List Programming Language

An instruction list (IL) is composed of a sequence of instructions. Each instruction begins in a new line and

contains an operator and operands immediately following the operator. The operands are variables and

constants defined in the IEC 61131-3 standard.

The instruction list is a line-oriented language, similar to the assembly language. An instruction is a

command that can be executed by the PLC. It must be described strictly in lines, and blank lines are allowed

as null instructions.

Basic format:

1. Instruction format: an operator, the instruction for executing a specific operation; an operand, the

variable or constant that the instruction acts on; a label, optional, the instruction is preceded by a label

and followed by a colon; annotation, optionally added after the operand.

2. Multiple operands: Some operators require several operands, separated by commas.

The instruction list programming language has the following characteristics:

 Easy to learn: The instructions are simple to operate and easy to master, suitable for programming

small and simple control systems.

 Powerful operators: Operators are used to manipulate variables of all basic data types and call

functions and function blocks.

 Direct interpretation and execution: The instruction list programming language can be directly

interpreted and executed inside the PLC, which is suitable for most PLC manufacturers.

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 85

 Error detection: Most programs written in the instruction list programming language cannot detect

errors until they are run.

 Language conversion: Programs written in the instruction list programming language are difficult to

convert to other programming languages, while programs written in other programming languages are

easy to convert to the instruction list programming language.

Program execution sequence

The instruction list programming language is executed from top to bottom, as shown in the figure below.

Programming example in the IL editor

Instruction format

In the instruction list programming language, instructions have the following format.

Label: Operator/Function Operand Annotation

[Example 5.27] Use the instruction list to realize the start, operation, and stop control of a motor.

The program in [Example 5.27] is used to perform start, operation, and stop control on the motor of a device.

In the program, the label is START, and the first line of instruction stores the result of the variable bStart in

the accumulator. The second line of instruction is used to perform a logical OR operation on the result of the

first line of instruction and the bHold output hold signal, and the result is still overwritten in the

accumulator. The third line of instruction is used to perform a logical AND operation on the negated result of

the second line of instruction and the stop signal bStop, and the result is still stored in the accumulator. The

fourth line of instruction is used to output the result in the current accumulator to the variable bDone.

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 86

5.4.2 Link Element

An instruction list is composed of a sequence of instructions. Each instruction begins on a new line and

contains an operator with optional modifiers, and, if necessary for the particular operation, one or more

operands separated by commas. Table 5-7 lists the operators and modifiers.

Table 5-7 Semantics of Operators and Modifiers

Operat

or
Modifier Meaning Example

LD N Load the (negated) operand into the accumulator LD iVar

ST N
Store the (negated) value in the accumulator into the operand

variable
ST iErg

S -
Set the operand (Boolean) to TRUE when the value in the

accumulator is TRUE
S bVar1

R -
Set the operand (Boolean) to TRUE when the value in the

accumulator is FALSE
R bVar1

AND N,(
Bitwise AND operation of the value in the accumulator and the

(negated) operand
AND bVar2

OR N,(
Bitwise OR operation of the value in the accumulator and the

(negated) operand
OR xVar

XOR N,(
Bitwise XOR operation of the value in the accumulator and the

(negated) operand

XOR

N,(bVar1,bVar2)

NOT - Bitwise negation of the value in the accumulator -

ADD (
Add the value in the accumulator to the operand and copy the

result to the accumulator

ADD

(iVar1,iVar2)

SUB (
Subtract the operand from the value in the accumulator and

copy the result to the accumulator
SUB iVar2

MUL (
Multiply the value in the accumulator by the operand and copy

the result to the accumulator
MUL iVar2

DIV (
Divide the value in the accumulator by the operand and copy the

result to the accumulator
DIV 44

GT (
Check if the value in the accumulator is greater than the operand

and copy the result (Boolean) to the accumulator; >
GT 23

GE (
Check if the value in the accumulator is greater than or equal to

the operand and copy the result (Boolean) to the accumulator; >=
GE iVar2

EQ (
Check if the value in the accumulator is equal to the operand and

copy the result (Boolean) to the accumulator; =
EQ iVar2

NE (
Check if the value in the accumulator is not equal to the operand

and copy the result (Boolean) to the accumulator; <>
NE iVar1

LE (
Check if the value in the accumulator is less than or equal to the

operand and copy the result (Boolean) to the accumulator; <=
LE 5

LT (

Check if the value in the accumulator is less than the operand,

copy the result (Boolean) to the accumulator, and jump

unconditionally (conditionally) to the label; <

LT cVar1

JMP CN Unconditional (conditional) jump to the label JMPN next

CAL CN
(Conditionally) call a program or function block (when the value

in the accumulator is positive)
CAL prog1

RET Return from the current POU and jump to the called POU RET

RET C
Conditional: Return from the current POU and jump to the called

POU only if the value in the accumulator is TRUE
RETC

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 87

Operat

or
Modifier Meaning Example

RET CN
Conditional: Return from the current POU and jump to the called

POU only if the value in the accumulator is FALSE
RETCN

) - Evaluate the delayed operand -

Note:

 The accumulator always stores the current value, which is generated when there is a subsequent

operation. The operand of CAL should be the instance name of a called function block.

 The result of the NOT operation is the bit negation of the current result. The modifier N indicates a

negation operation. The RET operator does not require an operand.

 The modifier C indicates that the instruction is executed only if the result of the current operation is

Boolean TRUE (or when the Boolean value of the operator is FALSE in combination with the “N”

modifier).

 An operator can have more than one modifier at the same time, or have only one or none. For example,

the JMP operator can have three formats: JMP, JMPC, and JMPN.

The left parenthesis “(“ indicates that the operation of the operator is deferred until a right parenthesis “)” is

encountered. Therefore, this operator can be used to implement program block operations and master

control operations in traditional PLCs.

5.4.2.1 Operand

Operands can represent variables or symbolic variables directly. For example:

LDA: It indicates setting the current value equal to the value corresponding to the symbolic variable A.

AND%IX1.3: It indicates that the current result is ANDed with the third bit of the input unit 1, and the result is

used as the current value.

JMPABC: It indicates that when the current calculated value is the Boolean value 1, execution starts from the

position labeled ABC.

RET: It is an operator without operands. When this instruction is executed, the program will return to the

instruction after the original breakpoint. Breakpoints are caused by function calls, function block calls, or

interrupt subprograms.

5.4.2.2 Instruction

The instruction list programming language defined in the IEC61131-3 standard summarizes the traditional

instruction list programming language by taking its strengths and overcoming its weaknesses, uses

functions and function blocks, and employs the overload properties of data types, etc., making the

programming language simpler and more flexible and the instructions easier. Its main advantages are as

follows:

Function and function block calls:

Standard library calls: Timer and counter function block instructions can be directly called in the instruction

list programming language through the standard library, making complex function implementation easier.

Simplified programming: By calling predefined functions and function blocks, you can reduce programming

workload and improve code readability and maintainability.

Overload properties of data types:

Simplified operation: The overload properties of data types allow the same operation to be performed on

variables of different data types, which simplifies the operation process and makes the code more concise

and intuitive.

Program block combination:

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 88

Utilization of parentheses: You can use parentheses to easily combine program blocks together and realize

the functions of instructions such as master control, making the implementation of complex logic more

intuitive.

Edge detection:

Differentiation function: Signal are differentiated by using edge detection, which simplifies the instruction

set and makes the edge detection of input signals easier.

Data transmission instructions:

Assignment function MOVE: Data transmission instructions can be directly implemented using the

assignment function MOVE, making data transmission operations more direct and clear.

5.4.2.3 Operator

Before introducing the operator, we need to introduce a concept, namely the accumulator, which is

particularly important in the instruction list programming language.

The instruction list programming language provides an accumulator to store the current result. Unlike the

accumulator used in a traditional PLC, the number of storage bits of this standard accumulator is variable,

that is, the standard instruction list programming language provides a virtual accumulator with a variable

number of storage bits, and the number of storage bits depends on the operands and data types being

processed. Similarly, the data type of the virtual accumulator may also be changed to adapt to the data type

of the operand of the latest operation result.

During the execution of instructions, the data storage method is as follows:

Operation result: = current operation result operation operand

Therefore, under the operation defined by the operator, the current operation result and the operand

undergo the operation defined by the operator. The operation result is used as a new operation to store the

result back into the accumulator of the current operation result.

5.4.2.4 Modifier

There are three modifiers, namely C, N, and N,(, as shown in Table 5-8. The modifier itself cannot be

constructed independently and needs to be combined with the preceding operator to form a complete

statement.

Table 5-8 Modifier Instructions

Modifier Use Function

C
Use in combination with JMP, CAL,

and RET

This instruction is executed only when the result

of the preceding expression is TRUE

N
Use in combination with JMPC,

CALC, and RETC

This instruction is executed only when the result

of the preceding expression is FALSE

N,(Miscellaneous
Negate the operand (rather than the value in the

accumulator)

The modifier C indicates that the instruction is executed only if the result of the current operation is TRUE

(or when the Boolean value of the operator is FALSE in combination with the “N” modifier). The logic of the

modifier N is exactly opposite to that of C.

[Example 5.28] Modifier example.

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 89

First, TRUE is loaded into the accumulator, and then the value of the variable bVar1 is negated and ANDed

with the value in the accumulator. At this time, the ANDN instruction is used. If AND is used, it means that the

AND operation is performed directly. If the result is TRUE, the program jumps to m1. Otherwise, the variable

bVar2 is negated and loaded into the accumulator and output. This instruction uses LDN and the modifier N,

which also means negation.

5.4.3 Operation Instructions

The instruction list programming language includes 9 categories of instructions, which are described below.

5.4.3.1 Data Access Instructions

Data access instructions indicate operations that read data from data storage units. Standard instructions

use LD and LDN instructions to represent access and access

negation instructions. The programming language format is as follows:

LD operand // Store the content in the data storage unit specified by the operand as the

current result.

LDN operand // Negate the content in the data storage unit specified by the operand and then

store it as the current result.

LD is short for Load, while LDN is short for LoadNot.

The operation object of a data access instruction, that is, the operation object of LD or LDN, is an operand. It

is a read operation on the content in the data storage unit corresponding to the operand. The read data is

stored in the operation result accumulator, which is also called the current value.

The LD instruction is used to read the data of a normally open contact, while the LDN instruction is used to

read the data of a normally closed contact.

Similar to a relay logic circuit, for normally open contacts, that is, the movable contacts, the LD access

instruction is used. For example, the LD%IX0.0 instruction executes the operation of accessing the contact

state of the operand address %IX0.0. From the register point of view, the operation process is to transmit the

input state of the address %IX0.0 to the operation result accumulator. Figure 5-38 a) and b) show instruction

examples of a relay logic circuit and the instruction list programming language.

Figure 5-38 Examples and Operation Processes of LD and LDN Instructions

a) Relay logic circuit B) Instruction list programming language

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 90

Figure 5-39 Operation Processes of LD and LDN Instructions

%IX0.0 input state

%IX0.1 input state

Accumulator

Negation Accumulator

The figure shows the execution process of data access. For normally closed contacts, that is, the movable

contacts, the LDN logical negation instruction is used. For example, the LDN%IX0.1 instruction executes the

operation of accessing the contact state of the operand address %IX0.1. From the register point of view, the

operation process is to negate the state of the input state register of the address %IX0.1 and then transmit

the negated result to the operation result accumulator.

Table 5-9 Examples of LD and LDN Instructions

Instruction Description Data Type of the Accumulator

LD FALSE The current value is equal to FALSE Boolean

LD TRUE The current value is equal to TRUE Boolean

LD 3.14 The current value is equal to 3.14 Real number

LD 100 The current value is equal to 100 Integer

LD T#0.5s
The current value is equal to the time

constant 0.5s
Time data

LD START
The current value is equal to the state of

the variable START

Depend on the type of the variable

START

5.4.3.2 Output Instructions

Output instructions are used to transmit the content in the operation result accumulator to the output state

register. Standard instructions use ST and STN

instructions to represent access and access negation instructions. The programming language format is as

follows:

ST operand // Store the current result in the data storage unit specified by the operand.

STN operand // After negating the current result, store it in the data storage unit specified by

the operand.

It should be noted that after executing the ST or STN instruction, the current operation result is still retained

in the data storage unit of the operation result accumulator. ST means Store and STN is short for StoreNot.

Similar to a relay logic circuit, the ST instruction is used for coils. For example, the ST%QX0.0 instruction

executes the operation of output to the %QX0.0 coil: from the register point of view, the operation process is

to transmit the state of the operation result accumulator to the output address of %QX0.0. Figure 5-40 a)

and b) show instruction examples of a relay logic circuit and the instruction list programming language.

Figure 5-40 Examples and Operation Processes of ST and STN Instructions

a) Relay logic circuit B) Instruction list programming language

The figure shows the execution process of data access. Use the STN%QX0.1 instruction to execute the

operation of output to the %QX0.1 de-excitation coil; the operation process is to negate the state of the

operation result accumulator and then transmit the negated result to the address of the output %QX0.1.

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 91

Figure 5-41 Operation Processes of ST and STN instructions

Accumulator

Accumulator

%QX0.0
output state

Negation
%QX0.1

output state

5.4.3.3 Set and Reset Instructions

The standard instruction set uses S and R instructions to represent set and reset instructions. The

programming language format is as follows:

S operand // When the current result is FALSE, set the content in the data storage unit

corresponding to the operand to TRUE and retain it.

R operand // When the current result is TRUE, set the content in the data storage unit

corresponding to the operand to FALSE and retain it.

This type of instruction has memory properties. After the S operand is executed, the content in the data

storage unit corresponding to the operand is set to TRUE and is memorized and retained until the R operand

instruction is executed. The execution of the R operand instruction sets the content in the data storage unit

corresponding to the operand to FALSE. Likewise, the content in the data storage unit is retained until the S

operand instruction is executed and its content is set to TRUE.

The S and R instructions can be implemented by calling the SR and RS function blocks. Compared with

function blocks, the difference lies in that the execution sequence of S and R instructions is determined

according to their positions in the program. Therefore, the precedence determination is different from RS

and SR. In addition, function blocks must first set the S and R terminals before executing the call instruction.

S stands for Set, while R stands for Reset. Examples of S and R instructions are shown in Table 5-10.

Table 5-10 Examples of S and R Instructions

Instruction Description

SET: LD TRUE The current value is equal to TRUE

 S START
The current value is equal to TRUE, and the value of the

variable START is set to TRUE and retained

 LD FALSE The current value is equal to FALSE

 S STOP
The current value is equal to FALSE, and the value of the

variable STOP is set to FALSE and retained

RESET: LD TRUE The current value is equal to TRUE

 R STOP
The current value is equal to TRUE, and the value of the

variable STOP is set to FALSE and retained.

The S instruction is a conditional STC output instruction, while the R instruction is a conditional STCN

output instruction. Therefore, when the current result memory is TRUE, the S operand instruction executes

the operation of setting the output operand to a set position. Similarly, the R operand instruction executes

the operation of setting the output operand to a reset position, that is, the operation of set negation.

5.4.3.4 Logical Operation Instructions

Standard logical operations include: AND(N), OR(N), XOR(N) and NOT. The programming language format is

as follows:

Logical operator operand or logical operator N operand

Logical operator: The operand is used to perform a specified logical operation on the content in the current

result memory and the content in the data storage unit corresponding to the operand, and the operation

result is stored in the current result memory as the new current result.

Logical operator N: The operand is used to perform a specified logical operation on the content in the

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 92

current result memory and the negated result of the content in the data storage unit corresponding to the

operand, and the operation result is stored in the current result memory as the current result.

[Example 5.29] Motor control program example.

This example is a typical motor control program. The input variables A and B as well as the output variable C

are all symbolic variables, and their actual addresses must be assigned in the declaration part.

5.4.3.5 Arithmetic Operation Instructions

This type of instruction includes ADD, SUB, MUL, DIV, and MOD. The programming language format is as

follows:

ADD operand // The content in the data storage unit corresponding to the operand is added

to the current result, and the operation result is stored in the current result memory.

SUB operand // The content in the data storage unit corresponding to the operand is

subtracted from the current result, and the operation result is stored in the current result memory.

MUL operand // The current result is multiplied by the content in the data storage unit

corresponding to the operand, and the operation result is stored in the current result memory.

DIV operand // The current result is divided by the content in the data storage unit

corresponding to the operand, and the operation result (quotient) is stored in the current result

memory.

MOD operand // The current result is modulo the content in the data storage unit

corresponding to the operand, and the operation result is stored in the current result memory.

[Example 5.30] Operation example of the temperature compensation coefficient.

[Example 5.30] is used to perform temperature compensation on the gas flow, where rTem1 is the actual

temperature in °C. The program reads 273.15 in the first line; the second line adds the actual temperature

value rTem1 to 273.15 and uses it as the current value. The third line divides this current value by

the designed temperature value, and the result is stored in the current value memory; the fourth line stores

the operation result as the temperature compensation value in rCompensate. It can be seen that the ADD

and DIV operations in the program are both operations of real number data types.

5.4.3.6 Comparison Operation Instructions

Comparison instructions include: GT (>), GE (≥), EQ (=), NE (≠), LE (<), and LT (≤). The programming language

format is as follows:

GT operand // The current operand > the content in the data storage unit corresponding to

the operand, and the operation result TRUE is sent to the current result register.

GE operand // The current operand ≥ the content in the data storage unit corresponding to

the operand, and the operation result TRUE is sent to the current result register.

EQ operand // The current operand = the content in the data storage unit corresponding to

the operand, and the operation result TRUE is sent to the current result register.

NE operand // The current operand ≠ the content in the data storage unit corresponding to

the operand, and the operation result TRUE is sent to the current result register.

LE operand // The current operand < the content in the data storage unit corresponding to the

operand, and the operation result TRUE is sent to the current result register.

LT operand // The current operand ≤ the content in the data storage unit corresponding to the

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 93

operand, and the operation result TRUE is sent to the current result register.

This type of instruction is used to compare the current result with the content in the data storage unit

corresponding to the operand. When the comparison condition specified by the operator is met, the current

result is set to TRUE; otherwise, it is set to FALSE. The comparison instruction changes the data type of the

current result memory to a Boolean data type.

Note:

 This instruction directly stores the comparison result in the data storage unit, and the user can execute

subsequent programs according to the state of the storage unit.

 Comparison operation instructions are suitable for comparing variables of different data types and are

not limited to single-bit comparisons. Therefore, their application scope can be expanded.

[Example 5.31] Example of a comparison operation instruction.

In [Example 5.31], the variable rRealVar is a process measurement value. When its value is greater than 50, it

means that the measurement value is out of limit, and the red alarm bRed is TRUE. Otherwise, bGreen is

TRUE.

5.4.3.7 Jump and Return Instructions

The jump instruction is JMP and the return instruction is RET. The programming language format for each of

them is as follows:

JMP Label // Jump to the label position and then continue execution

RET // Return to the breakpoint at the time of jump and then continue execution

The operand of the jump instruction is a label rather than the address of the data storage unit

corresponding to the operand.

The return instruction has no operands and is used to call a function, function block, or program to return.

JMP is short for Jump. When this instruction is executed, if the current result is TRUE, the jump condition is

met, and the program is interrupted at this point and jumps to the program line where the label is located to

continue execution. It is used in conjunction with the RET instruction to implement the execution of

subprograms. It can be accompanied by a modifier C or N, indicating execution or negation based on the

current result memory content.

RET is short for Return. After this instruction is executed, the program returns and starts execution from the

first instruction after the power failure. It can be accompanied by a modifier C or N, indicating execution or

negation based on the current result memory content.

Note:

 The jump instruction jumps from the master program to a subprogram. A subprogram cannot jump to

the master program using a jump instruction, but can only return using a return instruction. A

subprogram starts with a label and ends with a RET instruction.

 The label in the program is unique.

[Example 5.32] Example of a jump instruction

[Example 5.32] is used for switching control between automatic and manual programs. When the AUTO

switch is switched to the automatic position, AUTO is TRUE and the program will execute the jump

instruction JMPC. Therefore, the program jumps to the AUTOPRO subprogram and executes the associated

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 94

programs under automatic conditions. When the jump condition is not met, the JMP instruction is executed,

so the program jumps to the MANPRO subprogram and executes the associated programs under manual

conditions.

It should be noted here that AUTOPRO and MANPRO are subprogram labels rather than program names.

5.4.3.8 Call Instructions

The standard call instruction of IEC61131-3 is the CAL instruction. The programming language format is as

follows.

CAL operand // Call the function, function block, or program represented by the operand

By executing this instruction, functions, function blocks, and programs can be called to simplify the program

structure and make the program description clear. The general call format is as follows.

CAL is short for Call, which means calling. The operand of the CAL instruction is a function name or a

function block instance name. Parameters in the instance name are separated by commas.

5.4.3.9 Parentheses Instructions

The IEC61131-3 standard uses parentheses to modify instructions, that is, to perform precedent operations.

The left parenthesis “(” is used to push the current accumulator content into the stack and store the

operation instruction of the operator. At this time, the other content of the stack is moved down one layer.

The right parenthesis “)” is used to pop the content in the top layer of the stack and perform the

corresponding operation on the current accumulator content. The operation result is placed in the current

accumulator. At this time, the content of the stack is moved up one layer. Therefore, the left parenthesis is

called an operation delay, and its instantaneous result does not affect the current accumulator.

Table 5-11 Expressive Properties of Parentheses

No. Description/Example

1
Parenthesized expression

starting with an explicit operator
AND(LD %IX0.1 OR %IX0.2)

2
Parenthesized expression (short

form)
AND(LD %IX0.1 OR %IX0.2)

[Example 5.33] Modify an arithmetic operation with parentheses.

In [Example 5.33], the final implemented algorithm is rVar1+rVar2*(rVar3+rVar4). During the entire operation,

the data type must remain consistent. In addition, the data type is transmitted. The operation starts from

the innermost parentheses and moves outwards layer by layer until the outermost parentheses are reached.

[Example 5.34] Modify a logical operations with parentheses.

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 95

[Example 5.35] Application of parentheses in parallel connection of program blocks.

In [Example 5.35], the two instructions starting with OR are two program blocks, which are programs that

connect two contacts in series. Finally, after the OR operation, the operation result is stored in the bOutput

variable.

In mathematical operations, parentheses have a similar function to brackets, that is, the operations outside

the brackets are deferred.

[Example 5.36] Delay function of parentheses.

In [Example 5.36], the operation result is (rVar1+rVar2)*(rVar3-rVar4).

The relationship between the accumulator and the stack is illustrated by the following example.

[Example 5.37] Relationship between the accumulator and the stack.

In [Example 5.37], the data in the stack and the current accumulator data are shown in Table 5-12.

Table 5-12 Changes in Stack Data and Current Accumulator Data

Instruction 1 2 3 4 5 6

Current

accumulator
rVar1 rVar1 rVar1 rVar1 rVar1 rVar1+ rVar2*(rVar3- rVar4)

Stack 1 - rVar2 rVar2 rVar2 rVar2*(rVar3-rVar4) -

Stack 2 - - rVar3 rVar3 - rVar4 - -

Finally, the operation result of [Example 5.37] is rVar1+rVar2*(rVar3-rVar4).

Therefore, it is easier to implement more complex operation relationships using the structured text or

ladder diagram language. Jumping from instructions within parentheses can sometimes produce

unpredictable results, so you need to be careful when doing so.

5.4.4 Function and Function Block

5.4.4.1 Function Call

In the instruction list programming language, function calls are relatively simple.

Function Call Method

Enter the function name in the operator field, and use the first input parameter as the operand of LD. If there

are more parameters, enter the next one in the same line as the function name, and add subsequent

parameters separated by commas to this line or the following line. The function return value will be stored

in the accumulator. It should be noted that according to the IEC standard, there can only be one return value.

The programming language format and example of a function call are shown in Table 5-13.

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 96

Table 5-13 Programming Format and Example of a Function Call

Type Programming Format Example

Single

parameter

LD

Function

name

ST

Parameter

Return value

LD

COS

ST

0.5 // Read the radian 0.5

// Call the COS function

Var1 // Store the operation result 0.87758 in the

variable Var1

Dual-param

eter

LD

Function

name

ST

Parameter 1

Parameter 2

Return value

LD

ADD

ST

Var1 // Read the value of the variable Var1

Var2 // Add to the value of the variable Var2

Var3 // Store the return value of the operation

result in Var3

Multi-param

eter

LD

Function

name

ST

Parameter 1

Parameter

2,…,parame

ter n

Return value

LD

SEL

ST

Var1 // Read the value of the variable Var1

IN0,IN1// Select IN0 or IN1 as the return value

according to the value of Var1

Var2 // Store the return value of the operation

result in Var2

The programming language format of a function call with a non-formal parameter list is as follows.

Function name non-formal parameter, non-formal parameter, ..., non-formal parameter,

The programming language format of a function call with a formal parameter list is as follows.

Function name (first formal parameter := actual parameter, ..., last formal parameter := actual

parameter)

Examples of function calls

The following two examples of function calls will help you have a clearer understanding.

[Example 5.38] Example of a non-formal parameter function call.

In [Example 5.38], the ADD function is used to directly implement the addition operation of multiple values.

Therefore, compared with the addition operation of a traditional PLC, the program is simplified. It should be

noted that some traditional PLC products only allow one operand, for example, ADD10. CoDeSys, however,

can be directly superimposed.

[Example 5.39] Example of a formal parameter function call.

Call the RIGHT function. The first parameter of this function is LEN, which is the data length of the variable

strVar1. The second parameter is sub1, which is the data length in the current accumulator minus 1 and

represents the number of bits to shift right, that is, 1 bit at a time. If the above program is converted into a

structured text, it becomes as follows:

strVar1 := RIGHT(strVar1, (LEN(strVar1) - 1))；

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 97

5.4.4.2 Function Block Call

Function Block and Program Call Method

In non-formal parameter programming languages, there are two methods to call a function block.

1. The programming language format of a function block call with a formal parameter list is as follows.

CAL function block instance name (formal parameter list)

2. The programming language format of a function block call with parameter reading/storage is as

follows.

CAL function block instance name

Function block and program call example

The following uses the TON function block as an example to illustrate how to call a function block.

[Example 5.40] The program for calling a function block with parameter reading/storage is as follows.

5.4.5 Application Examples

[Example 5.41] Weighing display example.

In actual industrial production, many devices are equipped with weighing and screening instruments. When

the actual weight of the product does not meet the set value, the product will be considered defective and a

rejection signal will be triggered to reject the product. Such instruments have weighing-related programs.

Control requirements

The weighing instrument stores the gross weight data of the material in the PLC register, uses the weighing

function to subtract the tare weight from the gross weight, and finally outputs the net weight as a REAL type

variable.

Assumptions: gross weight variable: rGrossWeight; tare weight variable: rTareWeigh; net weight variable:

rActuallyWeight.

In order to control the execution of the weighing signal, it is necessary to set the manual trigger signal as the

weighing instruction and use the Boolean variable bStart as the start instruction.

The data display types of gross weight rGrossWeight, tare weight rTareWeight, and net weight

rActuallyWeight are all REAL data types.

Programming

Write the function block FB_Weight, with the function block declaration area shown below.

FUNCTION_BLOCK FB_WEIGHT

VAR_INPUT

 bStart: BOOL;

 rGrossWeight:REAL;

 rTareWeight:REAL;

END_VAR VAR_OUTPUT

 ENO:BOOL;

 rActuallyWeight:REAL;

END_VAR

VAR

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 98

END_VAR

The logical program of the function block is as follows:

After the program of the function block is completed, the actual test is performed by adding a new program,

calling the function block FB_Weight in the program, and filling in the corresponding input and output

parameters. The final program is shown in the figure below.

Weighing program example

For example, the gross weight is 5 (g) and the tare weight is set to 1 (g). Only when bStart is triggered and

becomes TRUE, the final net weight will be 4 (g); otherwise, it will always be 0.

[Example 5.42] Example of a loop operation.

Control requirements

Create a program that calculates the cumulative sum and factorial of numbers from 1 to 10. You can use the

JMPC jump instruction in the program.

Programming

The variable declaration is as follows:

PROGRAM PLC_PRG

VAR

 diSum,diProduct:DINT;

 i:BYTE;

END_VAR

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 99

The above program can simply perform cumulative sum and factorial operations. The operation result is 55

in diSum and 3628800 in the variable diProduct. It should be noted that when the operation result is larger

than the allowable range of the data type set for the variable, the result will be set to 0. For example, if the

cumulative sum and factorial of 1 to 50 are calculated and the factorial result exceeds the allowable range of

a long long integer, the result is set to 0. To solve this problem, you can change the data type of the variable

to a REAL type or DOUBLE PRECISION REAL type.

5.5 Sequential Function Chart (SFC)

The SFC programming language is designed to meet the needs of sequential logic control. During

programming, the process of sequential action flow is divided into steps and transition conditions. The

function flow sequence of the control system is allocated according to the transition conditions, and the

action is performed step by step in sequence, as shown in the figure. Each step indicates a control function

task and is represented by a box. The box contains the ladder logic used to complete the corresponding

control function task. This programming language makes the program structure clear and easy to read and

maintain, which can greatly reduce the programming workload and shorten the programming and

debugging time. It is used in situations where the system is large in scale and the program relationships are

complex. It features taking the function as the main line, performing allocation in the sequence of function

flow, clear organization, and ease of understanding the user program.

Figure 5-42 Sequential Function Chart Programming Language

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 100

5.5.1 Introduction to the Sequential Function Chart Programming Language

Basic structure

A SFC program starts from the initial step. When the transition condition is met, the next step of the

transition condition is executed in sequence, and the series of actions is ended by the END step. The whole

process is shown in Figure 5-43.

Figure 5-43 Basic Process of an SFC Program

Step 0 (S0)

Transition condition 0

(t0)

Step 1 (S1)

Transition condition 1

(t1)

Step 2 (S2)

Initial

step

Transition

condition

Step

Transition

condition

Step

END

step

Block

1. If the SFC program is started, the initial step,

i.e. step 0 in the figure, will be executed first;

during the execution of the initial step, the

program will check the next transition condition

of the initial step, i.e. whether the "transition

condition 0" in the figure is established. If it is

established, the program jumps to the next

step.

2. Only the initial step is executed before the

"transition condition 0" is established; when the

"transition condition 0" is established, the

execution of the initial step will be stopped and

the next step "step 1" of the initial step will be

executed; during the execution of "step 1", the

next transition condition of "step 1" will be

checked, that is, whether the "transition

condition 1" in the figure is established.

3. When the "transition condition 1" is

established, the execution of "step 1" will be

stopped and "step 2" will be executed.

4. Execute subsequent steps in sequence in

the order in which the transfer conditions are

established. When the END step is executed,

the corresponding block will end.

Program features

1. SFC advantages

 Best choice for sequential control

The automatic operation sequence can be converted into a graphic description as it is, so it is easy to

program and understand the program.

 Comprehensible structured program

Graphics can be used for hierarchical and modular programming, so it is easy to test run and maintain. As

shown in the figure, the left side is an equipment operation flowchart. Through the SFC programming

language, the flowchart on the left can be directly converted into a program, and the programmer only

needs to add a corresponding logic to each action and add appropriate transition conditions when the

process jumps.

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 101

Figure 5-44 Equipment Operation Flowchart Figure 5-45 SFC Diagram

Process start

Pallet confirmation
and clamping

operation

Drilling

Release, workpiece
unloading

Processing
completed

Initial step

Step 1

Step 2

Step 3

Transition

condition 1

Transition

condition 2

Transition

condition 3

Transition

condition 4

 No interlocking required between processes (steps)

Since the CPU only operates on the action steps, the forward and backward action logics do not need to be

interlocked. During SFC programming, you do not need to consider interlocking, because if the conditions of

the previous and next steps are not met, the program will not execute other steps. Therefore, there is no

need to consider too much about contact interlocking.

 Same coil shared in multiple processes (steps)

Since the CPU only operates on the action steps, even if the same coil exists in the steps that are not in

motion, it will not be processed as a double coil. (If the coil is the same as that in the master sequential

control program, it will be processed as a double coil.)

 Action state monitoring with graphics

When mechanical equipment stops due to a fault, the current step in which it is stopped can be displayed on

the monitor so that the cause of the shutdown can be found quickly, which is convenient for

troubleshooting. In addition, if there are annotations attached to each step, it will be clear at a glance why

the action stops.

 Standardized design

The program is created graphically according to the control flow, so no matter who writes it, it will be almost

the same with no individual differences, thus achieving standardization of design drawings.

 Coordinated programming by multiple persons

The control content can be divided into multiple parts, which are written by different people and then

combined into one.

 Operation processing by step

Since the CPU only operates on the action steps, the scan time can be shortened through good

programming methods.

 Easy system design and maintenance

Since the control of the entire system, the individuals, and the machine corresponds to the SFC program

and steps on a one-to-one basis, even personnel with little experience in sequential control programs can

design and maintain the system. In addition, other programmers also use this format to design programs

that are more readable than other programming languages.

 In addition, by effectively using the functions of SFC, the cycle time of mechanical operation can be

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 102

shortened.

2. SFC disadvantages

 Inapplicable control content

Programs such as emergency stop, continuous monitoring, and receiving data from a computer that use

interrupt processing are not sequentially controlled and are therefore not suitable for writing SFC programs.

(If you write a ladder diagram program in the master program to control such content, it will be easier to

summarize and grasp it.)

 Prejudice due to unfamiliarity

Due to unfamiliarity, there may be prejudice that it cannot be used in extremely complex controls.

(Structuring and modularization through SFC can organize the content to be controlled, so only ladder

diagram programming is required).

5.5.2 SFC Structure

In the “Toolbox” of the SFC programming language, you can add SFC tools. An SFC consists of the 6 major

parts listed in Table 5-14, among which steps and transition conditions are the basic elements of SFC. The

various basic elements can be integrated for form several basic structures. Any complex or simple SFC

structure is composed of these basic elements, as shown in Figure 5-46.

Figure 5-46 Basic Structure of an SFC

Step

Transition
condition

Table 5-14 SFC Toolbox

Type
Graphic

Symbol
Description

Step
SFC consists of a series of steps that are interconnected via directed

links.

Transition

An action is a collection of instructions implemented in other

languages, such as a collection of statements implemented in IL or in

ST,

or a collection of networks implemented in LD, in FBD, or in SFC

Action
An action instruction can add an entry action and an exit action to a

step.

Jump
The switching between steps is a transition. The step transition is

performed only when the step transition condition is TRUE.

Macro Add a macro

Branch Add parallel branches

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 103

5.5.2.1 Step

Definition of a step

A step represents a major function in the entire industrial process. It can be a specific time or stage, or an

action performed by several devices. The step belongs to the execution body of an SFC, and all the logical

codes for implementing the execution are included in it. A transition condition determines the state of the

step. When the transition condition of the previous step is met, this step is activated and the activated step

will enter the execution state.

During activation, this step is scanned repeatedly until the transition condition of this step is met, the step

activation is released, execution exits to the next step, and the next step is activated.

Each step in an SFC is represented by a box, which contains the “step name” and the up and down transition

relationships represented by connecting lines. The step name can be edited directly at the current location,

and must be unique within the POU where it is located, which requires special attention when SFC action

programming is used.

Step configuration

There are two types of steps: initial step and normal step. The following will introduce these two different

types of steps one by one.

1. Initial step

The initial step is a step indicating the start of each block. You can select the corresponding “step” by

right-clicking to select “Initial Step” or pressing the “ ” button in the shortcut menu to set the initial step.

As shown in Figure 5-47 a), the view of the initial step is slightly different from that of the normal step. The

initial step is represented by a double rectangular box (surrounded by a double-sided line), which can be set

by right-clicking, as shown in Figure 5-47 b).

Table 5-15 Step Editing

Type
Graphic

Symbol
Description

Initial Step
It is used to set the step currently selected in the SFC editor as the

initial step

Figure 5-47 Initial Step Setting

a) Initial step view b) Initial step setting

2. Normal step

The “normal step” currently being executed is called an “active step”. In online mode, the “active step” is

filled in blue.

Each step consists of an action and a flag that indicates whether the step is active. If a single-step action is

being executed, the step will be displayed as a blue frame, as shown in the figure below.

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 104

For a normal step, all actions of the active step in a control cycle will be executed. Therefore, when the

transition condition is TRUE after the step is activated, the step after it is activated. The currently active step

will be executed again in the next cycle.

5.5.2.2 Action

Definition of an action

As introduced at the beginning of this section, the most basic structure of the SFC execution process is an

coordination of steps and transition conditions. Whenever a step is activated, it will be executed until the

transition condition is met before moving to the next step. The next step is activated to start a new

execution action, and it will not stop until its transition condition is met. The steps are executed in sequence,

as shown in the figure below.

Figure 5-48 SFC Execution Steps

Initial step

Release, workpiece

unloading

Processing

completed Drilling

An action is a specific operation to be performed, such as opening a valve, starting or stopping a motor, and

moving a workpiece or product. In each step, multiple actions can be executed, and the transition condition

is also an execution judgment. Therefore, when an SFC operation process structure is established, a very

important part is to determine the steps and configure their actions.

In addition, the following labels will be generated:

 Whenever a step is created, it is automatically assigned a structure label.

 Whenever an action is created, it is automatically assigned a structure label.

 Whenever a transition condition is created, it is automatically assigned a BOOL label. The data of these

labels can be referenced in programming.

Each step can define multiple (or single) actions which include a detailed description of the execution of this

step. The action can be written in LD, FBD, ST, SFC, or other languages. Users can edit entry and exit actions.

The elements for editing actions are listed in Table 5-16

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 105

Table 5-16 Action

Type
Graphic

Symbol
Description

Add Entry

Action
 Action performed before step activation

Add Exit Action
Action to be executed in the next cycle after the step is executed (“step

exit”)

Once you select “Add Action”, the system will automatically pop up a prompt box, as shown in Figure 5-49.

You can select the desired programming language to write action programs.

Figure 5-49 Programming Languages Supported by Step Actions

Qualifier

Qualifiers are used to configure how an action will be associated with an IEC step. They are inserted into the

qualifier field of an action element. These qualifiers are processed by the SFC Action Control function block

of the IecSfc.library and can be automatically included in a project through the SFC plug-in IecSfc.library.

SFC qualifiers are listed in Table 5-17.

Table 5-17 Qualifiers

Qualifier Name Description

N Non-stored The action is active as long as the step is active

S0 Set (Stored)
The action is activated when the step is activated and remains

active even when the step is deactivated until it is reset

R0 Overriding Reset The action is deactivated

L Time Limited
The action is activated when the step is activated and remains

active until the step becomes inactive or the set time expires

D Time Delayed
The delay timer starts after activation. If the step is still active after

the delay, the action is active until the step becomes inactive

P Pulse
When the step is activated/deactivated, the action is executed only

once

SD
Stored and time

Delayed

After the delay, the action is activated and remain active until it is

reset

DS Delayed and Stored
If the step is still active after a specific time delay, the action is

activated and remains active until it is reset

SL
Stored and time

limited

The action is activated when the step is activated and remains

active for a certain time before being reset

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 106

When the qualifier L, D, SD, DS, or SL is used, a time value is required in the format of the TIME type.

[Example 5.43] Application example of the qualifier N.

Figure 5-50 Action Qualifier N

As described in Table 5-17, the qualifier “N” plays the following role: As long as the corresponding step is

activated, the corresponding associated variable is also activated. As shown in the figure, bVar2 is set to ON

every time Step0 is executed; otherwise, it is set to OFF. This qualifier can be used to monitor the step

execution state.

The qualifiers L, D, SD, DS, and SL require a time value in the format of a time constant, i.e. T#(value)(unit).

For example, the time value of 5 s is expressed as: T#5S.

Action configuration

You can find the POU of the SFC programming language in the device tree, right-click and select “Add Object”,

and then select an action, as shown in Figure 5-51 a), or you can directly use the Toolbar and press the

“ ” button to add an action. The Toolbar is shown in Figure 5-51 b).

Figure 5-51 Add Actions 1

a) Add actions from the device tree b) Add actions from the Toolbox

If you use the second method, select an “Action” in the Toolbar drag it to the top of the step. Then, four gray

boxes will be displayed, as shown in Figure 5-52. You can drag the action into the corresponding box. After

dragging, the corresponding settings will be added to the “Step Properties” corresponding to the step, as

shown on the right side of Figure 5-52.

The “1” in Figure 5-52 is the action of the IEC standard step. The CoDeSys control platform extends the IEC

standard actions and adds three additional actions: “step entry”, “step exit”, and “step active”. The

corresponding three extended actions are “2”, “3”, and “4” respectively.

Figure 5-52 Add Actions 2

The specific step actions corresponding to “1”, “2”, “3”, and “4” shown in Figure 5-52 are explained as follows.

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 107

1. Step entry

It refers to an action performed before the step is activated. The step actions will be executed as long as the

step is activated by the program before the “step active” actions. The action is associated with the step

via an entry in the “Step Entry” field of the “Step Properties”. It is indicated by an “E” in the lower left

corner of the step, as shown in Figure 5-53 a).

Figure 5-53 “Step Entry” and “Step Exit” states

a) “Step Entry” state b) “Step Exit” state

2. Step exit

This action will be executed in the next cycle after the step is executed. When the step is invalid, it will be

executed once. The execution will not be in the same cycle but at the beginning of the next execution cycle.

The action is associated with the step via an exit in the “Step Exit” field of the “Step Properties”. It is

indicated by an “X” in the lower right corner of the step, as shown in Figure 5-53 b).

3. Step action

When a step is activated, the step actions are executed and possible entries have been completed. After the

“Step Entry” of the step is executed, the step actions will be executed when the step is activated. However,

unlike an IEC step action, the actions will not be further executed when they are invalid and they cannot be

assigned qualifications.

The actions are associated with the step via an entry in the “Step Active” field of the “Step Properties”.

It is indicated by a small triangle in the upper right corner of the step, as shown in Figure 5-54 a).

Figure 5-54 “Step Active” State

a) b)

PROGRAM PLC_PRG

VAR

 b1,b2,b3: BOOL;

 X1, X2: BOOL;

 Time1:TIME:=T#5S;

END_VAR

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 108

Figure 5-55 “Step Activated” State

As shown in the figure, when the transition condition variable X1 is TRUE, the program will execute the step

Step0. At the same time, the corresponding step activation state variable b2 is TRUE. Since the qualifier

corresponding to b1 is D, and the specific time is defined in the declaration area of the program as the

variable Time, namely 5s, after Step0 is executed for 5s, the b1 variable is set from FALSE to TRUE.

4. Step association action

Step association actions include Insert Action Association and Insert Action Association After, as shown in

Table 5-19.When the current step is used as an IEC standard step, first click on the step, such as Step0, and

then select “SFC” → “Insert Action Association” to associate the IEC step action with the step. A step can

be associated with one or more actions.The position of the new action is determined by the current cursor

position and the instruction used. The action must be available in the project and must be inserted with a

unique action name, as shown in Figure 5-56.

Table 5-18 Step Association Actions

Type
Graphic

Symbol
Description

Insert Action

Association
 Associate an action with the step

Insert Action

Association After
 Associate a further action with step after an existing one.

Figure 5-56 Add an Associated Action to the IEC Standard Step

The IEC standard step is executed at least twice: the first time when it is activated and the second time in the

next cycle when it is deactivated.

Since multiple actions can be assigned to a step, these actions are executed in sequence from top to bottom.

For example, the action Action_AS1 is associated to the step AS1, and a step action and an IEC action with

the qualifier N are added respectively. In both cases, assuming that the transition conditions have been met,

it takes 2 cycles to reach the initial step again. Assuming that a variable iCounter is incremented in

Action_AS1, after the step Init is activated again, the value of iCounter in the step action example is 1. In

contrast, the value of iCounter for the IEC action with the qualifier N is 2.

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 109

5.5.2.3 Transition

The switching between steps is simply called transition. The value of a transition condition must be TRUE or

FALSE, so it can be a Boolean variable, Boolean address, or Boolean constant. A step transition can only be

performed if the step transition condition is TRUE. That is, after the action of the previous step is executed, if

there is an exit action, the exit action is executed once; if there is an entry action in the next step, the entry

action of the next step is executed once, and then all the actions of the active step are executed according to

the control cycle.

The program organization unit written in a sequential function chart contains a series of steps, which are

connected via directed links (transition conditions). The operations associated with step transition in a

sequential function chart are shown in Table 5-19.

Table 5-19 Transition Operations in the SFC

Type
Graphic

Symbol
Description

Insert

Step-Transition
 Insert a transition condition before a step

Insert

Step-Transition

After

 Insert a transition condition after a step

Generally speaking, there are different transition modes. The following are several transition modes that are

commonly used in sequential function charts. They will be introduced one by one below.

1. Serial transition

Serial transition refers to transition to the next to-be-executed step in a serial connection when the

transition condition is met.

Figure 5-57 Serial Branch Transition

Step n (action output [A])

Transition

condition b

Step n+1(action output [B])

As shown in the figure, when the action output [A] of the step n is executed, if the transition condition b is

met, the action output [A] is not executed and the action output [B] of the step (n+1) is executed.

2. Alternative transition

Alternative transition refers to executing only the step whose transition condition is met first among

multiple steps connected in parallel.

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 110

A. Alternative branch transition

Figure 5-58 Alternative Branch Transition

Step n

(action output [A])

Transition condition b

 Step (n+1)

(action output [B])

Transition condition c

 Step (n+2)

(action output [C])

 When the action output [A] of the step n is executed, the step (step (n+1) or step (n+2)) whose transition

condition is met first among transition conditions b or c is selected, and the action output ([B] or [C]) of

that step is executed.

 When the transition conditions are met at the same time, the transition condition on the left takes

precedence. The action output [A] of the step n is not executed.

 Once selected, the steps in the selected sequence are executed sequentially until a merge is performed.

B. Alternative merge transition

Figure 5-59 Alternative Merge Transition

 Step n

(action output [A])

Transition condition b

 Step (n+2)

(action output [C])

Transition condition c

 Step (n+1)

(action output [B])

If the transition condition (b or c) of the execution sequence in the branch is met, the action output ([A] or

[B]) of the step is not executed, and the action output [C] of the step (n+2) is executed.

3. Parallel transition

Parallel transition refers to executing multiple steps connected in parallel at the same time when the

transition condition is met.

A. Parallel branch transition

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 111

Figure 5-60 Parallel Branch Transition

Step n

(action output [A])

Transition condition b

Step (n+1)

(action output [B])

Transition condition d

Step (n+4)

(action output [E])

Transition condition c

Step (n+2)

(action output [C])

Step (n+3)

(action output [D])

 When the action output [A] of the step n is executed, if the transition condition b is met, the action

output [B] of the step (n+1) and the action output [D] of the step (n+3) are executed simultaneously.

 When the transition condition c is met, the program transits to the step (n+2), and when the transition

condition d is met, the program transits to the step (n+4).

B. Parallel merge transition

Figure 5-61 Parallel Merge Transition 1

Step n

(action output [A])

Transition condition b

Waiting step

Transition condition c

Waiting step

Transition condition d

Step (n+2)

(action output [C])

Step (n+1)

(action output [B])

 When the action output [A] of the step n and the action output [B] of the step (n+1) are executed, if the

transition conditions b and c are met, the action output [A] of the step n and the action output [B] of

the step (n+1) are not executed and the program transits to the waiting step.

 The waiting step is used to synchronize the steps executed in parallel. By transiting all the steps

executed in parallel to the waiting step, the transition condition d is checked. If the transition condition

d is met, the action output [C] of the step (n+2) is executed.

 The waiting step is regarded as a virtual step, and it does not matter even if there is no action output

ladder diagram.

5.5.2.4 Jump

A jump refers to transition to a specified step in the same POU when a transition condition is met. It is

indicated by a vertical line and horizontal arrow and the jump target name, as shown in .

A jump defines the step to be executed when the subsequent transition is TRUE. According to the program

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 112

execution sequence, the program cannot be cross-executed or executed upward, so a jump is needed. A

jump can only be used at the end of a branch. When the last transition is selected, it can be inserted through

the “Insert Jump” instruction, and the executable operations of the jump are shown in the figure below.

Table 5-20 Jump Elements in an SFC

Type
Graphic

Symbol
Description

Insert Jump Add a jump before a step.

Insert Jump

After
 Add a jump after a step.

The jump target can be given by an associated text string, which can be edited inline. It can be a step name

or a label for a parallel branch, as shown in the figure below.

Figure 5-62 Parallel Merge Transition 2

Step n

(action output [A])

Transition condition b

 Step m

(action output [B])

When the action output [A] of the step n is executed, if the transition condition b is met, the action output [A]

is not executed and the action output [B] of the step m is executed.

When a jump is executed within a parallel transition, it can only be executed in each vertical direction of the

branch. For example, a jump in the vertical direction from the branch to the merge, as shown in Figure 5-63.

Figure 5-63 Parallel Merge Transition 3

n

n

The jump programs shown in Figure 5-64 cannot be created: jumps to other vertical ladder diagrams within a

branch, jumps to the outside of a parallel branch, and jumps from the outside of a parallel branch to the

inside of the parallel branch. For example, a jump to the outside of a parallel branch (It cannot be specified).

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 113

Figure 5-64 Parallel Merge Transition 4

Jum

p

Parallel

transition

Parallel merge

transition not

executed

×

For example, when the transition condition shown in Figure 5-65 is met, a jump to the current step should

not be specified.If a jump to the current step is specified, it will not operate normally.

Figure 5-65 Parallel Merge Transition 5

n

n

Jump creation

Find “Jump” in the Toolbox to insert a jump, as shown in Figure 5-66 a). Then, you only need to enter the

jump target name, as shown in Figure 5-66 b). The jump target is Step0, so you just need to write Step0.

Figure 5-66 Jump Creation

a) Add a jump b) Jump target name

Figure 5-67 shows a typical application of the jump instruction. When the jump instruction t42 condition is

met, it will automatically jump to step1 according to the program instruction and re-enter the program loop.

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 114

Figure 5-67 Typical Application of the SFC Jump Instruction

5.5.2.5 Macro

Just like the definition of a macro in other software, the main function of a macro in SFC programs is to

avoid a lot of repetitive work. You only need to define a macro in advance and then call it in the program.

Common operations on a macro are listed in Table 5-21.

Table 5-21 Macro Elements in an SFC

Type
Graphic

Symbol
Description

Insert Macro Insert a macro

Add Macro Add a macro

Enter Macro Open the Macro Editor view

Exit Macro Return to the SFC standard view

Implicit variables

Each SFC step and IEC action provides implicitly generated variables for runtime monitoring of the step and

IEC action. It is also possible to define the variables to monitor and control SFC execution (timeout, restart,

spike mode). The types of these implicit variables are defined in the library IecSFC.library.

This library is automatically added when an SFC object is added.

In the SFC programming language, some implicit variables can be called externally. In normal conditions,

these variables are not displayed. To use these variables, you need to set the SFC properties. Right-click the

“Properties” of the POU of the SFC language, click the “SFC Settings” option in the pop-up Properties dialog

box, and check the variables you need to use, as shown in Figure 5-68.

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 115

Figure 5-68 Implicit Properties of an SFC

In order to access these flags and make them work, they must be declared and activated. You can set them

in the “SFC Settings” dialog box. It is a child dialog box of the “Object Properties” dialog box. If you want to

use this variable, you must check the “Enable” box in front of the variable. The specific usage of the variable

is also explained in its description.

5.6 Continuous Function Chart (CFC)

5.6.1 Continuous Function Chart Programming Language Structure

5.6.1.1 Introduction

Continuous Function Chart (CFC) is actually another form of FBD. In the whole program, the sequence of

operation blocks can be customized to facilitate the implementation of process operations. It is used to

describe the top-layer structure of resources and the allocation of tasks to programs and function blocks.

The main difference between a continuous function chart and a function block chart lies in resource and

task allocation. Each function is described by a task name, as shown in the figure below. If a function block

within a program is executed under the same task as its parent program, the task association is implicit. The

Continuous Function Chart (CFC) is shown in Figure 5-69.

Figure 5-69 Continuous Function Chart (CFC)

5.6.1.2 Execution Sequence

The number in the upper right corner of the element in the CFC language shows the execution sequence of

the element in the CFC in online mode. The execution process starts from the element numbered 0. In each

PLC operation cycle, the element numbered 0 is always the first to be executed. When the element is moved

manually, its number remains the same. When a new element is added, the system automatically assigns a

number according to the topological sequence (from left to right, from top to bottom), as indicated by the

red part in Figure 5-70.

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 116

Figure 5-70 Sequence Number in the CFC Programming Language

The numbers in the upper right corner of the operation block, output, jump, return, and label elements in

the CFC language show the execution sequence of the elements in CFC in online mode. The execution

process starts from the element numbered 0. Considering that the execution sequence will affect the

results,it can be changed under certain circumstances. The execution sequence of the element can be

changed by using the sub-menu instructions in the “Execution Sequence” under the “CFC” menu.

The execution sequence includes the following instructions: Send to Front, Send to Back, Move Up, Move

Down, Set Execution Sequence, Order by Data Flow, Order by Topology, as show in Figure 5-71.

Figure 5-71 CFC Sequence Arrangement

1. Send to Front

Move the selected element to the beginning of the execution sequence. If multiple elements are selected to

execute this instruction, the original internal sequence of selected elements remains unchanged, and the

internal sequence of unselected elements also remains unchanged.

2. Send to Back

Move all selected elements to the end of the execution sequence. The internal sequence of selected

elements remains unchanged, and the internal sequence of unselected elements also remains unchanged.

For specific operations, please refer to the above-mentioned “Send to Front” function.

3. Move Up

Move all selected elements (except for the element which has been already at the beginning of the execution

sequence) one place forwards in the execution sequence. For example, if you select the element No. 3 in

Figure 7 and execute the “Move Up” instruction, the result is that the execution sequence of elements No. 2

and No. 3 is swapped, and the rest elements remain unchanged.

4. Move Down

Move all selected elements (except for the element which has been already at the end of the execution

sequence) one place backwards in the execution sequence. For specific operations, please refer to

above-mentioned “Move Up” function.

5. Set Execution Sequence

This instruction can renumber the selected elements and adjust the their execution sequence. Once the “Set

Execution Sequence” instruction is executed, the “Set Execution Sequence” dialog box will be opened. The

current element number is displayed in the “Current Execution Sequence” field. You can enter the desired

element number in the “New Execution Sequence” field. The possible values are displayed in brackets, as

shown in the figure below.

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 117

6. Order by Data Flow

The “Order By Data Flow” instruction means the execution sequence is determined by the data flow of the

elements rather than by their positions (topology). Once the “Order By Data Flow” instruction is executed,

the CFC editor will perform the following operations.

Step 1 Order the elements topographically.

Step 2 Create a new sequential processing list.

Step 3 Based on the known values of the inputs, calculate which of the elements not yet numbered can be

processed next.

The advantage of the “Order By Data Flow” instruction is that after an algorithm is executed, the algorithm

block connected to its output pin will be executed immediately, which is not always so in the case of “Order

by Topology”. The execution result of the “Order by Topology” instruction may be different from that of the

“Order By Data Flow” instruction.

[Example 5.44] The figures below show how to view the results using the “Order By Data Flow” instruction

after the element labels are disrupted.

Figure 5-72 View Before Using the “Order By Data Flow” Instruction

After selecting all elements and executing the “Order By Data Flow” instruction, the result is as shown in

Figure 5-73.

Figure 5-73 View After Using the “Order By Data Flow” Instruction

The element numbers are re-arranged in the order of data flow, and the execution sequence of the functions

MUL and SUB has also changed.

7. Order by Topology

The “Order by Topology” instruction means that the execution sequence is determined by the topological

order of the elements rather than by the data flow. Once the “Order by Topology” instruction is executed, the

elements are executed from left to right and from top to bottom. The element numbers, indicating the

position of an element within the execution sequence, increase from left to right and from top to bottom. In

this case, the position of the connecting line is not relevant, only the location of the element is important.

[Example 5.45] Figure 5-74 shows disrupted element labels. Use the “Order by Topology” instruction to view

the results.

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 118

Figure 5-74 View Before Using the “Order by Topology” Instruction

Select the SUB function, right-click and execute the “Order by Topology” instruction. The result is shown in

Figure 5-75.

Figure 5-75 View After Using the “Order by Topology” Instruction

The execution sequence follows the rule below: the elements are executed from left to right and from top to

bottom, and the element numbers, indicating the position of an element within the execution sequence,

increase from left to right and from top to bottom.

5.6.2 Link Element

The CFC elements include Block, Input, Output, Jump, Label, Return, and Comment.

Figure 5-76 CFC Toolbox

5.6.2.1 Pointer

The pointer is at the top of the Toolbox list by default. As long as this entry is selected, the cursor has the

shape of an arrow and you can select elements in the editor window for positioning and editing.

5.6.2.2 Input and Output

Input

You can insert the “ ” symbol in the CFC Toolbox list to add the Input function. The graphic after insertion is

“ ”.

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 119

You can select the text offered by “???” and replace it with a variable or constant. You can also use the Input

Assistant to select a valid identifier.

Output

You can insert the “ ” symbol in the CFC Toolbox list to add the Output function. The graphic after insertion

is “ ”.

You can select the text offered by “???” and replace it with a variable or constant. You can also use the

Input Assistant to select a valid identifier.

5.6.2.3 Block

You can insert the “ ” symbol in the CFC Toolbox list to add the Block function. The graphic after

insertion is “ ”.

You can use a block to represent operators, functions, function blocks, and programs. You can select the text

offered by “???” and replace it with an operator, function, function block, or program name after adding the

Block function. Alternatively, you can use the Input Assistant to select one of the available objects.

[Example 5.46] Call the timer function block in the CFC programming language through the Block function.

Create a new POU, use the CFC programming language to add “Block”, click “???”, and enter “F2” to

pop up the Input Assistant. Find and select the desired timer function block, as shown in Figure 5-77.

Figure 5-77 CFC Input Assistant Tool

If you need to call a function block in the CFC programming language, you can directly enter the instance

name of the function block and assign values or variables separated with commas to each parameter of the

function block in the subsequent brackets. The function block call ends with a semicolon.

For example, call the TON timer function block in the CFC programming language. Assuming its instance

name is TON1, the specific implementation is shown in Figure 5-78.

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 120

Figure 5-78 Function Block Call in the CFC Programming Language

If you insert a function block, another “???” will be displayed above the block. You need to replace “???” with

the name of the function block instance. In this example, the instance names are TON_0 and TOF_0.

If you replace an existing block with another (by modifying the entered name) and the new one has a

different minimum or maximum number of input or output pins, the pins will be adapted correspondingly. If

pins are to be removed, the lowest one will be removed first.

5.6.2.4 Jump and Label

The jump of a CFC program consists of two parts: jump instruction and label, which will be explained in

detail below.

Jump

You can insert the “ ” symbol in the CFC Toolbox list to add the Jump function. The graphic after insertion

is “ ”.

You can use the jump element to indicate at which position the execution of the program should continue.

This position is defined by a “label” (see below). After inserting a new jump, you need to replace the text

offered by “???” with the label name.

Label

You can insert the “ ” symbol in the CFC Toolbox list to add the Label function. The graphic after insertion is

“ ”.

A “label” marks the position to which the program can jump. In online mode, if a jump is activated, you can

enter the label corresponding to the jump.

A label name is not a variable, so it does not need to be defined in the program declaration area. [Example

5.49] illustrates how to correctly use the jump instruction and label.

[Example 5.47] Examples of CFC jump instruction and label functions.

Figure 5-79 Example of CFC Jump Function

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 121

After the program starts, when the input value nInput is greater than 10 and less than 100, the program

executes the jump function and goes to the label Label1. Since the execution sequence number of Label1 is

0, the execution sequence in this program is: 4→0→1→2→3→4, and performed in a loop.

Since the program has an auto-increment function, but the execution sequence numbers are 5 and 6, when

the jump instruction is executed, the auto-increment function will not be executed by the program;

otherwise, nCounter will be auto-incremented.

5.6.2.5 Return

You can insert the “ ” symbol in the CFC Toolbox list to add the Return function. The graphic after insertion

is “ ”.

You need to pay special attention to the execution sequence number. When the condition is met, the

program will be returned directly.

In online mode, a return element with the RETURN name is automatically inserted in the first column and

after the last element in the editor. In a branch, it is automatically jumped to the place before execution

leaves the POU.

The RETURN instruction is used to exit a program organization unit (POU).

Note: In online mode, a RETURN element is automatically inserted after the last element in the editor. In

single-step debugging, it will automatically jump to the RETURN before leaving the POU.

5.6.2.6 Composer

You can use a composer to handle an input of a structure type operation block. The composer will display

the structure components and thus make them accessible in the CFC for the programmer.

You can insert the “ ” symbol in the CFC Toolbox list to add the Composer function. The graphic after

insertion is “ ”.

The usage method of the composer is as follows: first add a composer to the editor, replace "???" with the

name of the concerned structure, and then connect the output pin of the composer and the input pin of the

operation block.

[Example 5.48] Process a function block instance fubblo1 with the CFC program CFC_PROG, which has an

input variable struvar of structure type. By using the composer element, the structure type variable can be

accessed:

Definition of the structure stru1:

TYPE stru1:

STRUCT

ivar:INT;

strvar:STRING:='hallo';

END_STRUCT

END_TYPE

Declaration and implementation of the function block fublo1:

FUNCTION_BLOCK fublo1

VAR_INPUT

struvar:STRU1;

END_VAR

VAR_OUTPUT

fbout_i:INT;

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 122

fbout_str:STRING;

END_VAR

VAR

fbvar:STRING:='world';

END_VAR

fbout_i:=struvar.ivar+2;

fbout_str:=CONCAT (struvar.strvar,fbvar);

Declaration and implementation of the program CFC_PROG:

PROGRAM PLC_PRG

VAR

intvar: INT; stringvar: STRING;

fbinst: fublo1;

erg1: INT;

erg2: STRING;

END_VAR

In the program, as shown in Figure 5-80, ‘1’ is a composer, and ‘2’ is stru1 containing a structure input

variable. The operation of the structure type input block is implemented.

Figure 5-80 CFC Composer Example

Figure 5-81 Operation Result of the CFC Composer Example

5.6.2.7 Selector

You can use a selector to handle an output of a structure type operation block. The selector will display the

structure components and thus make them accessible in the CFC for the programmer.

You can insert the “ ” symbol in the CFC Toolbox list to add the Selector function. The graphic after

insertion is “ ”.

The usage method of the selector is as follows: first add a selector to the editor, replace "???" with the name

of the concerned structure, and then connect the output pin of the selector and the output pin of the

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 123

operation block.

[Example 5.49] Process a function block instance fubblo2 with the CFC program CFC_PROG, which has an

output variable fbout of stru1 structure type. By using the selector element, the structure type variable can

be accessed:

Definition of the structure stru1:

TYPE stru1:

STRUCT

ivar:INT;

strvar:STRING:='hallo';

END_STRUCT

END_TYPE

Declaration and implementation of the function block fublo1:

FUNCTION_BLOCK fublo2

VAR_INPUT

fbin : INT;

fbin2:STRING;

END_VAR

VAR_OUTPUT

fbout : stru1;

END_VAR

VAR

fbvar:INT:=2;

fbin3:STRING:='Hallo';

END_VAR

Declaration and implementation of the program PLC_PRG_1:

PROGRAM PLC_PRG_1 VAR

intvar: INT;

stringvar: STRING;

fbinst: fublo2;

erg1: INT;

erg2: STRING;

fbinst2: fublo2;

END_VAR

In the program, as shown in Figure 5-82, ‘1’ is a function block with an output variable fbout of stru1

structure type, and ‘2’ is a selector.

Figure 5-82 CFC Selector Example

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 124

Figure 5-83 Operation Result of the CFC Selector Example

5.6.2.8 Comment

You can insert the “ ” symbol in the CFC Toolbox list to add the Comment function.

The graphic after insertion is “ ”.

You can use this element to add any comments to the chart in the CFC program. Select the placeholder text

and replace it with any desired text. To obtain a new line within the comment, press <ctrl>+<enter>. The CFC

Comment view is as shown below.

5.6.2.9 Input and Output Pins

Depending on the block type, you can add an input pin (or output pin). For this purpose, select “Input Pin”

(or “Output Pin”) in the Toolbox list, then drag and drop it onto the block in the CFC editor. At this time, an

input pin (or output pin) will be added to the block.

5.6.3 CFC Configuration

1. Add a connection in the CFC program

When adding a connection, first activate the pin of the connection block. After activation, you will see a red

filled square at the pin. Select the square with the left mouse button, as indicated by ‘1’ in Figure 5-84,

hold down the mouse and draw a line to the other block to be connected, as indicated by ‘2’ in Figure 5-84,

and then release the mouse. At this time, the connection between the two blocks is completed.

INVT Medium and Large-Scale PLC Programming Manual Programming Language

202409 (V1.0) 125

Figure 5-84 Add a Connection in the CFC Program

2. Delete a connection in the CFC program

When deleting a connection, first activate the pin of the connection block. After activation, you will see a red

filled square at the pin. Right-click the square and select “Delete” in the menu bar that appears, as indicated

by the framed part in Figure 5-85. You can also select the “ ” button in the shortcut menu bar to delete

the connecting line in the program.

Figure 5-85 Delete a Connection in the CFC Program

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 126

6 Basic Instructions

6.1 Comparison Instructions

6.1.1 Greater Than (GT)

Evaluate two input values: When the first input value is greater than the second input value, TRUE is output;

otherwise, FALSE is output.

Example in FBD:

Note: When the data types of the two input variables are inconsistent, a compilation error will be

reported.

6.1.2 Less Than (LT)

Evaluate two input values: When the first input value is less than the second input value, TRUE will be output;

otherwise, FALSE will be output.

Example in FBD:

Note: When the data types of the two input variables are inconsistent, a compilation error will be

reported.

6.1.3 Greater Than Or Equal To (GE)

Evaluate two input values: When the first input value is less than the second input value, TRUE will be output;

otherwise, FALSE will be output.

Example in FBD:

Note: When the data types of the two input variables are inconsistent, a compilation error will be

reported.

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 127

6.1.4 Less Than Or Equal To (LE)

Evaluate two input values: When the first input value is less than or equal to the second input value, TRUE is

output; otherwise, FALSE is output.

Example in FBD:

Note: When the data types of the two input variables are inconsistent, a compilation error will be

reported.

6.1.5 Equal To (EQ)

Evaluate two input values: When the first input value is equal to the second input value, TRUE is output;

otherwise, FALSE is output.

Example in FBD:

Note: When the data types of the two input variables are inconsistent, a compilation error will be

reported.

6.1.6 Not Equal To (NE)

Evaluate two input values: When the first input value is not equal to the second input value, TRUE is output;

otherwise, FALSE is output.

Example in FBD:

Note: When the data types of the two input variables are inconsistent, a compilation error will be

reported.

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 128

6.2 Selection Instructions

6.2.1 Binary Selection (SEL)

When G=FLASE, IN0 is output; when G=TRUE, IN1 is output.

Example in FBD:

Note: When G is TRUE, CODESYS does not evaluate the expression before IN0. When G is FALSE, CODESYS

does not evaluate the expression before IN1.

6.2.2 Multiplexer (MUX)

Select the k-th value from a group of values. The first value is K=0. If K is greater than the other input values,

CODESYS transmits the last value

(INn).

Example in FBD:

6.2.3 Maximum (MAX)

Take the maximum of the two input values and output the maximum value from the right side.

Example in FBD:

6.2.4 Minimum (MIN)

Take the minimum of the two input values and output the minimum value from the right side.

Program example:

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 129

6.2.5 Limit (LIMIT)

MX is the upper and MN the lower limit for the result. If the value IN exceeds the upper limit MX, LIMIT will

return MX; if IN falls below the lower limit MN, the result will be MN. When the value IN is within the range of

MN and MX, the result is the input value of IN.

Example in FBD:

Note: The MX and MN data types must be the same.

6.3 Counter Instructions

6.3.1 Counter Up (CTU)

This counter function block counts up.

Input:

CU:BOOL; if a rising edge is detected, CV is increased by 1

RESET: BOOL; if TRUE, CV is reset to 0

PV:WORD; the upper limit of CV count

Output:

Q:BOOL; TRUE if CV=PV

CV:WORD; continuously increased by 1 until CV

If the value of RESET is TRUE, CV is reset to 0. If a rising edge is detected on CU from FALSE to TRUE, CV is

increased by 1. If CV is greater than or equal to PV, Q is TRUE.

Declaration example:

CTUInst:CTU;

Example in FBD:

Example in ST:

CTUInst(CU:=VarBOOL1,RESET:=VarBOOL2,PV:=VarWORD1);

VarBOOL3:=CTUInst.Q;

VarWORD2:=CTUInst.CV;

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 130

6.3.2 Count Down (CTD)

This counter function block counts down.

Input:

CD:BOOL; if a rising edge is detected, CV is decreased by 1

LOAD:BOOL; if TRUE, CV is set to PV

PV:WORD; the initial value when CV starts to decrease

Output:

Q:BOOL; TRUE if CV=0

CV:WORD; continuously decreased by 1 until PV=0

If the value of LOAD is TRUE, CV is initialized to PV. If a rising edge is detected on CD from FALSE to TRUE and

CV is greater than 0, CV is decreased by 1 (that is, CV cannot be less than 0). If CV is equal to 0, Q is TRUE.

Declaration example:

CTDInst:CTD;

Example in FBD:

Example in ST:

CTDInst(CD:=VarBOOL1,LOAD:=VarBOOL2,PV:=VarWORD1);

VarBOOL3:=CTDInst.Q;

VarWORD2:=CTDInst.CV;

6.3.3 Counter Up/Down (CTUD)

This counter function block counts up/down.

Input:

CU:BOOL; if a rising edge is detected, CV is increased by 1

CD:BOOL; if a rising edge is detected, CV is decreased by 1

RESET: BOOL; if TRUE, CV is reset to 0

LOAD:BOOL; if TRUE, CV is set to PV

PV:WORD; the upper limit value when CV starts to increase, or the initial value when CV decreases

Output:

QU:BOOL; TRUE if CV = PV

QD: BOOL; TRUE if CV=0

CV:WORD; continuously decreased by 1 until PV=0

If a rising edge is detected on CU from FALSE to TRUE, CV is increased by 1. If a rising edge is detected on CD

from FALSE to TRUE and CV is greater than 0, CV is decreased by 1. If CV is greater than or equal to PV, QU is

TRUE. If CV is equal to 0, QD is TRUE.

Declaration example:

CTUDInst:CUTD;

Example in FBD:

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 131

Example in ST:

CTUDInst(CU:=VarBOOL1,CD:=VarBOOL2,RESET:=VarBOOL3,LOAD:=VarBOOL4,PV:=VarWORD1);

VarBOOL5:=CTUDInst.QU;

VarBOOL6:=CTUDInst.QD;

VarWORD2:=CTUDInst.CV;

6.4 Timer Instructions

6.4.1 Pulse Timer (TP)

This timer function block creates a pulse.

Input:

IN:BOOL; if a rising edge is detected, ET starts timing

PT:TIME; the upper limit value of ET timing

Output:

Q:BOOL; when ET is timing, its value is TRUE

ET:TIME; the current state of time

If the value IN is FALSE, Q is FALSE and ET=0. If the value IN is TRUE, the time in ET starts counting in

milliseconds until ET=PT. After ET=PT, it will remain constant. If IN is TRUE and ET is less than or equal to PT,

Q is TRUE; otherwise, Q is FALSE.

During the time period defined by PT, Q is TRUE. The time sequence diagram of TP is as follows:

IN

ET

PT

t0

t4+PTt0+PT

Q

t1 t2 t3 t4 t5

t4t0

t0 t1 t2 t4 t5
0

t2 t2+PT

Declaration example:

TPInst:TP;

Example in FBD:

Example in ST:

TPInst(IN:=VarBOOL1,PT:=T#5s);

VarBOOL2:=TPInst.Q;

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 132

6.4.2 On-delay Timer (TON)

This timer function block realizes an on-delay timing.

Input:

IN:BOOL; if a rising edge is detected, ET starts timing

PT:TIME; the upper limit value of ET timing (i.e. delay time)

Output:

Q: BOOL; if the ET timing reaches PT, a rising edge is output

ET:TIME; the current state of time

TP(IN,PT,Q,ET): IN and PT are input variables of BOOL type and TIME type respectively. Q and ET are output

variables of BOOL type and TIME type respectively. If the value IN is FALSE, Q is FALSE and ET=0.

If the value IN is TRUE, the time in ET starts counting in milliseconds until ET=PT. After ET=PT, it will remain

constant. If IN is TRUE and ET=PT, Q is TRUE. Otherwise, Q is FALSE. Therefore, when the delay (the time

defined by PT) elapses, a rising edge will be detected on Q.

The time sequence diagram of TON is as follows:

IN

ET

PT

t0

t4+PTt0+PT

Q

t1 t2 t3 t4 t5

t5t1

t0 t1 t2 t3 t4 t5
Q

Declaration example:

TONInst:TON;

Example in FBD:

Example in ST:

TONInst(IN:=VarBOOL1,PT:=T#5s);

6.4.3 Off-delay Timer (TOF)

This timer function block realizes an off-delay timing.

Input:

IN:BOOL; if a falling edge is detected, ET starts timing

PT:TIME; the upper limit value of ET timing (i.e. delay time)

Output:

Q: BOOL; if the ET timing reaches PT, a falling edge is output

ET:TIME; the current state of time

TOF(IN,PT,Q,ET): if IN is TRUE, Q is TRUE. If the value IN is FALSE, the time in ET starts counting in

milliseconds until ET=PT. After ET=PT, it will remain constant. If IN is FALSE and ET=PT, Q is FALSE;

otherwise, Q is TRUE. Therefore, when the delay elapses, a falling edge will be detected on Q.

The time sequence diagram of TOF is as follows:

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 133

IN

ET

PT

t0

t5+PTt0

Q

t1 t2 t3 t4 t5

t2t1+PT

t1 t2 t3 t4 t5
Q

Declaration example:

TOFInst:TOF;

Example in FBD:

Example in ST:

TOFInst(IN:=VarBOOL1,PT:=T#5s);

VarBOOL2:=TOFInst.Q;

6.4.4 Real-time Clock (RTC)

This clock function block starts timing from the set time.

Input:

EN:BOOL; if a rising edge is detected, CDT starts timing

PDT:DATE_AND_TIME; the date and time when the timing starts

Output:

Q: BOOL; when CDT starts timing, the output is TRUE

CDT:DATE_AND_TIME; the current date and time of the timer

VarBOOL2:=RTC(EN,PDT,Q,CDT): when EN is FALSE, the output variable Q is FALSE and CDT is

DT#1970-01-01-00:00:00. Once EN becomes TRUE (a rising edge is detected), as long as EN remains TRUE,

CDT is incremented in seconds with PDT as the initial value. When EN is reset to FALSE, CDT is reset to the

initial value DT#1970-01-01-00:00:00.

Declaration example:

RTCInst:RTC;

Example in FBD:

Example in ST:

RTCInst(EN:=VarBOOL1,PDT:=DT#2006-03-30-14:00:00,Q=>VarBOOL2,CDT=>VarTimeCur);

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 134

6.5 Bit and Word Logic Instructions

6.5.1 AND Instruction

When the two input bits on the left side are non-zero, the output bit on the right side also outputs 1;

otherwise, it outputs 0.

Example in FBD:

6.5.2 OR Instruction

When at least one of the two input bits on the left side is non-zero, the value of the output bit on the right

side is 1; otherwise, it is 0.

Example in FBD:

6.5.3 NOT Instruction

When the input bit is 0, the output bit on the right side outputs 1, and when the input bit on the left side is 1,

the output bit on the right side outputs 0.

Example in FBD:

6.5.4 XOR Instruction

When one of the two input bits on the left side is 1 and the other is 0, the output is 1; when the two input

values are both 1 or 0, the output is 0.

Example in FBD:

6.5.5 Set Dominant (SR)

This bistable function block realizes a prior set. Q1=SR(SET1,RESET): Q1=(NOTRESETANDQ1)ORSET1.

The input variables SET1 and RESET and the output variable Q1 are all of BOOL type.

Declaration example:

SRInst:SR;

Example in FBD:

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 135

Example in ST:

SRInst(SET1:=VarBOOL1,RESET:=VarBOOL2);

VarBOOL3:=SRInst.Q1;

6.5.6 Reset Dominant (RS)

This bistable function block realizes a prior reset. Q1=RS(SET,RESET1): Q1=NOTRESET1AND(Q1ORSET).

The input variables SET1 and RESET and the output variable Q1 are all of BOOL type.

Declaration example:

RSInst:RS;

Example in FBD:

Example in ST:

RSInst(SET:=VarBOOL1,RESET1:=VarBOOL2);

VarBOOL3:=RSInst.Q1;

6.5.7 Rising Edge Detector (R_TRIG)

This edge detection function block detects a rising edge.

Input:

CLK: BOOL; the Boolean input signal is used to detect a rising edge

Output:

Q:BOOL; if CLK detects a rising edge, the output is TRUE

When CLK changes from “FALSE” to “TRUE”, the rising edge detector starts, the output Q changes from “TRUE”

to “FALSE” and remains “FALSE” for one operation cycle of the PLC; if CLK continues to remain “TRUE” or

“FALSE”, the output Q remains “FALSE”.

Declaration example:

RTRIGInst:R_TRIG;

Example in FBD:

Example in ST:

RTRIGInst(CLK:=VarBOOL1);

VarBOOL2:=RTRIGInst.Q;

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 136

6.5.8 Falling Edge Detector (F_TRIG)

This edge detection function block detects a falling edge.

Input:

CLK: BOOL; the Boolean input signal is used to detect a falling edge

Output:

Q:BOOL; if CLK detects a falling edge, the output is TRUE

When CLK changes from “TRUE” to “FALSE”, the falling edge detector starts, the output Q changes from

“TRUE” to “FALSE” and remains “FALSE” for one operation cycle of the PLC; if CLK continues to remain “TRUE”

or “FALSE”, the output Q remains “FALSE”.

Declaration example:

FTRIGInst:F_TRIG;

Example in FBD:

Example in ST:

FTRIGInst(CLK:=VarBOOL1);

VarBOOL2:=FTRIGInst.Q;

6.6 Bit/Byte Functions

6.6.1 EXTRACT

The input variable X of this function is of DWORD type and N is of BYTE type. The output variable is of BOOL

type, and the output is the value of the Nth bit of the input variable X, where N starts from the 0th bit.

Example in ST:

FLAG:=EXTRACT(X:=81,N:=4);

(*Result:TRUE,because81isbinary1010001,sothe4thbitis1*)

FLAG:=EXTRACT(X:=33,N:=0);

(*Result:TRUE,because33isbinary100001,sothebit'0'is1*)

6.6.2 PACK

PACK is used to pack 8 BOOL type input variables B0, B1, ..., B7 into 1 BYTE type data.

The function block UNPACK is closely related to this function.

6.6.3 PUTBIT

The input variables X, N, and B of this function are of DWORD type, BYTE type, and BOOL type respectively.

PUTBIT is used to set the Nth bit of X to the value B, where N starts from the 0th bit.

Example in ST:

var1:=38;(*binary100110*)

var2:=PUTBIT(A,4,TRUE);(*Result:54=2#110110*)

var3:=PUTBIT(A,1,FALSE);(*Result:36=2#100100*)

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 137

6.6.4 UNPACK

UNPACK is used to split the BYTE type input variable B into 8 BOOL type output variables B0, B1, ..., B7. It

functions oppositely to PACK.

Example in FBD:

6.7 Bit Shift Instructions

6.7.1 Bitwise Left-shift (SHL)

Shift the input value bit by bit to the left. The bits shifted out on the left are not processed and the bits on

the right are automatically filled with 0.

Example in FBD:

Note: The data can only be of Integer type. If it is of floating point type, an error will be reported.

6.7.2 Bitwise Right-shift (SHR)

Shift the input value bit by bit to the right. The bits shifted out on the right are not processed and the bits on

the left are automatically filled with 0.

Example in FBD:

Note: The data can only be of Integer type. If it is of floating point type, an error will be reported.

6.7.3 Bitwise Left-rotation (ROL)

 Rotate the input value bit by bit to the left, and the bits rotated out on the left are directly added to the

least significant bit on the right.

Example in FBD:

Note: The instruction supports the Integer data type.

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 138

6.7.4 Bitwise Right-rotation (ROR)

Rotate the input value bit by bit to the right, and the bits rotated out on the right are directly added to the

most significant bit on the left.

Example in FBD:

Note: The instruction supports the Integer data type.

6.8 Data Type Conversion Instructions

6.8.1 BOOL_TO_<TYPE>

Convert a Boolean type variable to a variable of any other type.

Example in FBD:

6.8.2 BYTE_TO_<TYPE>

Convert a Byte type variable to a variable of any other type.

Example in FBD:

6.8.3 WORD_TO_<TYPE>

Convert a Word type variable to a variable of any other type.

Example in FBD:

6.8.4 DWORD_TO_<TYPE>

Convert a Double-word type variable to a variable of any other type.

Example in FBD:

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 139

6.8.5 INT_TO_<TYPE>

Convert an Integer type variable to a variable of any other type.

Example in FBD:

6.8.6 SINT_TO_<TYPE>

Convert a Short-integer type variable to a variable of any other type.

Example in FBD:

6.8.7 DINT_TO_<TYPE>

Convert a Long-integer type variable to a variable of any other type.

Example in FBD:

6.8.8 UDINT_TO_<TYPE>

Convert an unsigned Long-integer type variable to a variable of any other type.

Example in FBD:

6.8.9 REAL_TO_<TYPE>

Convert a Real number type variable to a variable of any other type.

Example in FBD:

6.8.10 STRING_TO_<TYPE>

Convert a Character type variable to a variable of any other type.

Example in FBD:

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 140

6.8.11 TIME_TO_<TYPE>

Convert a Clock type variable to a variable of any other type.

Example in FBD:

6.8.12 TOD_TO_<TYPE>

Convert a Time type variable to a variable of any other type.

Example in FBD:

6.8.13 DATE_TO_<TYPE>

Convert a Date type variable to a variable of any other type.

Example in FBD:

6.8.14 DT_TO_<TYPE>

Convert a DateTime type variable to a variable of any other type.

Example in FBD:

6.9 Data Processing Instructions

6.9.1 MOVE

This operator is used to assign the value of one variable to another variable of the same type.

Instruction format:

Instruction Name FB/FC
LD

Representation
ST Representation

MOVE Assignment FC a2:=MOVE(a1);

6.9.2 HEXinASCII_TO_BYTE

When this instruction is triggered, the HEXinASCII data in the source data is converted into Byte type data.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation

HEXinASCII_TO_BYTE
HEXinASCII

to BYTE
FC

HEXinASCII_TO_BY

TE(W:=);

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 141

6.9.3 BYTE_TO_HEXinASCII

When this instruction is triggered, the Byte type data in the source data is converted into HEXinASCII type

data.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation

BYTE_TO_HEXinASCII
BYTE to

HEXinASCII
FC

BYTE_TO_HEXinAS

CII(B:=);

6.9.4 WORD_AS_STRING

When this instruction is triggered, the WORD type data in the source data is converted into STRING type

data.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation

WORD_AS_STRING
WORD to

STRING
FC

WORD_AS_STRING

(W:=,ORDER:=);

6.10 Arithmetic Instructions

6.10.1 ADD

Add the two inputs on the left side and output the result on the right side.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation

ADD Addition FC a1:=a2+a3;

6.10.2 SUB

Subtract one input from the other on the left side and output the result on the right side.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation

SUB Subtraction FC a1:=a2-a3;

6.10.3 MUL

Multiply the two inputs on the left side and output the result on the right side.

Instruction format:

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 142

Instruction Name FB/FC LD Representation ST Representation

MUL Multiplication FC a1:=a2*a3;

6.10.4 DIV

Divide one input by the other on the left side and output the quotient on the right side.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation

DIV Division FC a1:=a2/a3;

6.10.5 MOD

Perform the modulo division of one input by the other on the left side and output the non-negative integer

remainder on the right side.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation

MOV Modulo division FC a1:=a2 MOD a3;

6.10.6 ABS

Take the absolute value of the input data and assign it to the output variable.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation

ABS Absolute value FC q:=ABS();

6.10.7 SQRT

Compute the square root of the input value and output the result.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation

SQRT Square root FC q:=SQRT();

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 143

6.10.8 LN

Compute the natural logarithm of the input value and output the result.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation

LN
Natural

logarithm e
FC q:=LN();

6.10.9 LOG

Compute the logarithm of the input value in base 10 and output the result.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation

LOG
Logarithm in

base 10
FC q:=LOG();

6.10.10 EXP

Compute the exponential function of the input value and output the result.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation

EXP
Exponential

function
FC q:=EXP();

6.10.11 EXPT

Raise the input variable 1 to the power of the input variable 2 and output the result.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation

EXPT Exponentiation FC q:=EXPT();

6.10.12 SIN

Compute the sine of the input value and output the result.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation

SIN Sine FC q:=SIN();

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 144

6.10.13 COS

Compute the cosine of the input value and output the result.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation

COS Cosine FC q:=COS();

6.10.14 TAN

Compute the tangent of the input value and output the result.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation

TAN Tangent FC q:=TAN();

6.10.15 ASIN

Compute the arc sine of the input value and output the result.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation

ASIN Arc sine FC q:=ASIN();

6.10.16 ACOS

Compute the arc cosine of the input value and output the result in radians.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation

ACOS Arc cosine FC q:=ACOS();

6.10.17 ATAN

Compute the arc tangent of the input value and output the result in radians.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation

ATAN Arc tangent FC q:=ATAN();

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 145

6.10.18 RAD/DEG

RAD: Convert floating point degrees into radians. The calculation formula is [Radians = Degrees × л/180].

DEG: Convert floating point radians into degrees. The calculation formula is [Degrees = Radians × л/180].

Instruction format:

Instruction Name FB/FC LD Representation ST Representation

RAD
Degrees to

radians
FC q:=RAD();

DEG
Radians to

degrees
FC q:=DEG();

6.10.19 SIZEOF

The input value is used to define the number of bytes required by a “variable”. The SIZEOF operator always

returns an unsigned value. The type of the returned variable adapts to

the detected size of the “variable”.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation

SIZEOF
Size of data

type
FC SIZEOF();

6.11 Date and Time Instructions

6.11.1 SetDateAndTime

Set the time zone, date, and time of the current system.

Instruction format:

6.11.2 GetDateAndTime

Get the time zone, date, and time of the current system.

Instruction format:

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 146

6.12 String Function Instructions

6.12.1 LEN

This function is used to get the length of a character string. The input variable STR is of the STRING type, and

the return value is of the INT type.

Example in FBD:

Example in ST:

VarINT1:=LEN('SUSI');

6.12.2 LEFT

This function is used to get certain characters from the left of a source character string. The input variable

STR is of the STRING type, the input variable SIZE is of the INT type, and the return value is of the STRING

type.

LEFT (STR, SIZE) is used to get the characters with the length specified by SIZE, starting from the left of the

character string STR.

Example in FBD:

Example in ST:

VarSTRING1:=LEFT('SUSI',3);

6.12.3 RIGHT

This function is used to obtain certain characters from the right of a source character string. The input

variable STR is of the STRING type, the input variable SIZE is of the INT type, and the return value is of the

STRING type.

RIGHT (STR, SIZE) is used to get the characters with the length specified by SIZE, starting from the right of

the character string STR.

Example in FBD:

Example in ST:

VarSTRING1 := RIGHT ('SUSI',3);

6.12.4 MID

This function is used to get certain characters from a source character string. The input variable STR is of the

STRING type, the input variables LEN and POS are of the INT type, and the return value is of the STRING type.

MID (STR, LEN, POS) is used to obtain the characters with the length specified by LEN, starting from the

character with the position specified by POS of the character string STR.

Example in FBD:

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 147

Example in ST:

VarSTRING1:=MID('SUSI',2,2);

6.12.5 CONCAT

This function is used to concatenate two character strings. The input variables STR1 and STR2, and the

return value are of the STRING type.

Example in FBD:

Example in ST:

VarSTRING1:=CONCAT('SUSI','WILLI');

6.12.6 INSERT

This function is used to insert another character string at a specified position into a source character string.

The input variables STR1 and STR2 are of the STRING type, the input variable POS is of the INT type, and the

return value is of the STRING type.

INSERT(STR1,STR2,POS) is used to insert the character string STR2 next to the position specified by POS into

the character string STR1.

Example in FBD:

Example in ST:

VarSTRING1:=INSERT('SUSI','XY',2);

6.12.7 DELETE

This function is used to delete specified characters from a specified position of a source character string.

The input variable STR is of the STRING type, the input variables LEN and POS are of the INT type, and the

return value is of the STRING type.

DELETE (STR, L, POS) is used to delete certain characters from the character string STR, where L specifies the

length of characters to be deleted and POS specifies the character deletion start position.

Example in FBD:

Example in ST:

Var1:=DELETE('SUXYSI',2,3);

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 148

6.12.8 REPLACE

This function is used to replace certain characters at a specified position of a source character string with

another given character string.

The input variables STR1 and STR2 are of the STRING type, the input variables L and P are of the INT type,

and the return value is of the STRING type.

REPLACE(STR1,STR2,L,P) is used to replace certain characters with the character string STR2 for the

character string STR1, where L specifies the length of characters to be replaced and P specifies the character

replacement start position.

Example in FBD:

Example in ST:

VarSTRING1:=REPLACE(’SUXYSI’,’K’,2,2);

6.12.9 FIND

This function is used to search a character string for certain characters. The input variables STR1 and STR2

are of the STRING type, and the return value is of the INT type.

FIND(STR1,STR2)) is used to find where STR2 occurs in STR1 for the first time. If STR2 is not found in STR1,

the message is displayed: "OUT:=0".

Example in FBD:

Example in ST:

arINT1:=FIND('abcdef','de');

6.13 Address Operation Instructions

6.13.1 ADR/^

ADR: Get the memory address of the input variable and assign the result to the output variable. This

operator is an extension of the IEC61131-3 standard^: Get the address content of the input variable and

assign the result to the output variable.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation

ADR Get address FC ADR();

^
Get address

content
FC ^

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 149

6.13.2 BITADR

Get the memory address of a BOOL type variable and assign the result to the output variable.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation

BITADR Bit address FC BITADR();

6.14 File Operation Instructions

6.14.1 Overview

This library is mainly used for importing and exporting files/folders between an SD card and the local AX7X,

as well as deleting and writing files/folders.

The default SD card path is /home/root/temp/. If this path cannot be used, please try another version of the

SD card path: /home/root/sdcard/. The default local PLC path is /home/CODESYS/PlcLogic/.

Note: Since the PLC memory is small, it is recommended to use it reasonably.

6.14.2 Input and Output

Description of file structure:

In order to facilitate the storage and operation of file information, a custom file structure is created. This

structure differs from the FILE_DIR_ENTRY structure in that a Direction (file path) parameter is added.

Name Data Type Comment

Name STRING File name (including the file extension)

Direction STRING File path

isDirectory BOOL Folder flag, TRUE: folder, FALSE: file

Size CAA.SIZE File memory size, unit: Byte

LastModification DATE_AND_TIME Last modification time of the file

6.14.3 Load Files (files_load)

Category Name Data Type Initial Value Comment

Input

bExecute BOOL - Rising edge trigger

Direction STRING
'/home/CODESYS

/PlcLogic/_cnc/'
Target path

Only_Files BOOL -
TRUE: Only load files

FALSE: Load both files and folders

Output

Files
ARRAY[0…20] OF

Files
- List of loaded files, maximum 20

Files_Count UINT - Number of loaded files/folders

Error BOOL - Alarm flag

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 150

Category Name Data Type Initial Value Comment

ErrorID UINT - Alarm code

Done BOOL - Load completed flag

6.14.4 Copy Files (Files_Copy)

Category Name Data Type Initial value Comment

Input

bExecute BOOL - Rising edge trigger

File Files - Files to be copied

DestDir STRING
'/home/CODESYS

/PlcLogic/_cnc/'

Default path: local PLC: _cnc folder,

SD card: /home/root/temp/

OverWrite BOOL -

Overwrite existing files

TRUE: Overwrite, FALSE: Do not

overwrite

Output

Error BOOL - Alarm flag

ErrorID UINT - Alarm code

Done BOOL - Copy completed flag

Busy BOOL - Copying

6.14.5 Delete Files (Delete_File)

Category Name Data Type Initial value Comment

Input
bExecute BOOL - Rising edge trigger

File Files - Files to be deleted

Output

Done BOOL - Delete completed flag

xError BOOL - Alarm flag

eError STRING - Alarm code

6.14.6 Write Files (Write_File)

Category Name Data Type Initial value Comment

Input

bExecute BOOL - Rising edge trigger

OverWrite FALSE FALSE

TRUE: Overwriting

FALSE: The file has not been

written

Input FileName CAA.FILENAME ‘xx.cnc’
Name of the file to be written

(including the file extension)

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 151

Category Name Data Type Initial value Comment

Direction STRING
'/home/CODESYS/Plc

Logic/_cnc/'
File path

DataList
ARRAY[0..999] OF

STRING(150)
-

List of data to be written row by

row, with a maximum of 1000 data

entries stored at one time

DataListNu

m
INT - Number of entries in the data list

Output

Done BOOL - Write completed flag

Busy BOOL - Writing flag

Error BOOL - Alarm flag

ErrorID UINT - Alarm code

Use of the function block

It is implemented as follows in the ST language:

VAR

 Load:files_load;

 Load_Execite:BOOL;

 Load_Direction:STRING:=’/home/CODESYS/PlcLogic/_cnc/’;

 Load_Only_File:BOOL;

 files:ARRAY[0..19] OF files;

 files_Cunt:UINT;

 Load_Error:BOOL;

 Load_ErrorID:UINT;

 Load_Done:BOOL;

 Copy:Files_Copy;

 Copy_Execute:BOOL;

 File_Index:UINT:=0;

 Copy_File:Files;

 Copy_DestDir:STRING:=’/home/CODESYS/PlcLogic/_cnc/112/’;

 Copy_OverWrite:BOOL;

 Copy_Error:BOOL;

 Copy_ErrorID:UINT;

 Copy_Done:BOOL;

 Copy_Busy:BOOL;

 Delete:Files_Delete;

 Delete_Execute:BOOL;

 Delete_File:Files;

 Delete_Done:BOOL;

 Delete_Error:BOOL;

 Delete_ErrorID:UINT;

 Write:Write_File;

 Write_Execute:BOOL;

 Write_OverWrite:BOOL;

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 152

 Write_FileName:STRING;

 Write_Direction:STRING:=’/home/CODESYS/PlcLogic/_cnc/’;

 Write_DataList:ARRAY [0..999] OF STRING(150);

 Write_DataListNum:UINT;

 Write_Done:BOOL;

 Write_Busy:BOOL;

 Write_Error:BOOL;

 Write_ErrorID:UINT;

END_VAR

Load(

 bExecute:= Load_Execite,

 Direction:= Load_Direction,

 Only_Files:= Load_Only_File,

 Files=> files,

 Files_Count=> files_Cunt,

 Error=> Load_Error ,

 ErrorID=>Load_ErrorID ,

 Done=> Load_Done);

IF Load_Done THEN

 Load_Execite:=FALSE;

END_IF

Copy_File:=files[File_Index];

Copy(

 bExecute:= Copy_Execute,

 File:= Copy_File,

 DestDir:= Copy_DestDir,

 OverWrite:= Copy_OverWrite,

 Error=> Copy_Error,

 ErrorID=> Copy_ErrorID,

 Done=> Copy_Done,

 Busy=> Copy_Busy);

IF Copy_Done THEN

 Copy_Execute:=FALSE;

END_IF

//Delete_File.Direction:=Copy_DestDir;

Delete(

 bExecute:= Delete_Execute,

 File:= Delete_File,

 Done=> Delete_Done,

 Error=>Delete_Error ,

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 153

 ErrorID=> Delete_ErrorID);

IF Delete_Done THEN

 Delete_Execute:=FALSE;

END_IF

Write_DataListNum:=3;

Write_DataList[0]:=‘00’;

Write_DataList[1]:=‘111’;

Write_DataList[2]:=‘2222’;

Write_FileName:=files[File_Index].Name;

Write(

 bExecute:= Write_Execute,

 OverWrite:= Write_OverWrite,

 FileName:= Write_FileName,

 Direction:= Write_Direction,

 DataList:= Write_DataList,

 DataListNum:=Write_DataListNum,

 Done=> Write_Done,

 Busy=> Write_Busy,

 Error=> Write_Error,

 ErrorID=> Write_ErrorID);

IF Write_Done THEN

 Write_Execute:=FALSE;

END_IF

Error ID Error Type Solution

16#0000 No alarm -

16#0001
The target direction path does

not exist
Re-confirm the target path

16#0002 Failed to get the file name Confirm the name of the file to be loaded

16#0003
Timeout when closing the

target path

Confirm that other functions do not operate on the

path when closing it

16#0004 Failed to copy the file/folder Confirm whether the file and target path exist

16#0005 Failed to delete the file/folder Confirm whether the file and target path exist

16#0006 Failed to open the file Confirm that the file path and name are correct

16#0007 Failed to write the file
Confirm the amount of data to be written to avoid a

timeout

16#0008 Failed to close the file
Confirm that no other operations are being

performed on the file when the file is closed.

16#0009 The copied file exceeds 100 kB
Determine if the size of the file to be copied exceeds

100 kB

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 154

6.15 Regulators

6.15.1 PD

This function block is used to regulate proportions and differentials.

Input variables:

Variable Data Type Description

ACTUAL REAL Actual value of the control variable.

SET_POINT REAL Description value and instruction value.

KP REAL
Proportional coefficient used to represent the proportional gain of

the P-part.

TV REAL
Differential time used to represent the time calculated in seconds of

the D-part. For example, "0.5" indicates 500 s.

Y_MANUAL REAL Used to define the output value Y when MANUAL=TRUE.

Y_OFFSET REAL Offset value of the operation value Y.

Y_MIN,Y_MAX REAL

Lower limit and upper limit of the operation value Y. If Y reaches a

limit value, LIMITS_ACTIVE is set to TRUE and Y is kept within the

formulated range. This function block works only when Y_MIN <

Y_MAX.

MANUAL BOOL
If it is TRUE, manual operating is activated, and the output value is

defined through Y_MANUAL.

RESET BOOL
Setting the value to TRUE will reset the controller. During

re-initialization, Y is equal to Y_OFFSET.

Output variables:

Variable Data Type Description

Y REAL Operation value, defined by the function block (see the following).

LIMITS_ACTIVE BOOL
When the value is TRUE, Y reaches the given limit value (Y_MIN or

Y_MAX).

Example in FBD:

Y_OFFSET, Y_MIN, and Y_MAX are used to convert numbers in specified ranges.

MANUAL can be used to enable or disable manual operating. RESET is used to reset the controller.

During normal operating (MANUAL = RESET = LIMITS_ACTIVE = FALSE), the controller calculates the

deviation value SET_POINT-ACTUAL and stores the time-related derivatives de/dt as internal variables.

The output value Y can be obtained by using the following:

 (

)

Where SET_POINT-ACTUAL

Therefore, except for the P-part and the present deviation (D-part) of the controller, all the others have an

impact on the calculation output.

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 155

In addition, Y is restricted to the range defined by Y_MIN and Y_MAX. If Y reaches a limit value,

LIMITS_ACTIVE is set to TRUE. If there is no calculation limit value, Y_MIN and Y_MAX must be set to 0.

Once MANUAL=TRUE, Y is written into Y_MANUAL.

A P adjustment can be achieved by setting TV=0.

6.15.2 PID

This function block is used to regulate proportions, integrals, and differentials.

Input variables:

Variable Data Type Description

ACTUAL REAL Actual value of the control variable

SET_POINT REAL Expected value, instruction variable

KP REAL
Proportional coefficient. The value cannot be 0 for the unity gain in the

P-part; otherwise, the function block does not perform any calculations.

TN REAL

Reset time. The unit gain in the i part is fixed to seconds. For example,

"0.5" is 500 milliseconds, the value must be greater than 0; otherwise, the

function block does not perform any calculations. A smaller TN value

obtains a greater integral part, including the variable value. A greater TN

value obtains a smaller integral part

TV REAL
When the differential functions, the unit gain in the D-part is fixed to

seconds. For example, "0.5" is 500 milliseconds

Y_MANUAL REAL The output value is Y when MANUAL = TRUE

Y_OFFSET REAL Offset operation variable Y

Y_MIN

Y_MAX
REAL

A smaller resp value indicates a higher upper limit of the operation

variable Y.

If Y exceeds a limit value, LIMITS_ACTIVE is set to TRUE and Y is kept

within the formulated range.

Only when Y_MIN < Y_MAX, the control takes effect.

MANUAL BOOL
If it is TRUE, manual operating is activated, and the operation variable is

defined through Y_MANUAL.

RESET BOOL
During initialization in which Y is equal to Y_OFFSET, setting the value to

TRUE will reset the controller.

Output variables:

Variable Data Type Description

Y REAL
Operation variable value, defined by the function block (see the

following).

LIMITS_ACTIVE BOOL
The value TRUE indicates that Y is out of the range defined by

Y_MIN and Y_MAX.

OVERFLOW BOOL The value TRUE indicates overflow (see the following).

Example in FBD:

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 156

Y_OFFSET, Y_MIN, and Y_MAX are used to convert numbers in specified ranges.

MANUAL can be used to enable or disable manual operating. RESET is used to reset the controller.

During normal operating (MANUAL = RESET = LIMITS_ACTIVE = FALSE), the controller calculates the

deviation value SET_POINT-ACTUAL and stores the time-related derivatives de/dt as internal variables.

The output value Y can be obtained by using the following:

 (

∫

)

Where SET_POINT-ACTUAL

Therefore, except for the P-part and the present deviation (D-part) of the controller, all the others have an

impact on the calculation output.

The PID controller can be easily converted into a PI controller by setting TV=0.

Incorrect controller parameter settings may cause overflow if the incorrect integral part becomes larger.

Therefore, for safety purpose, the output can call OVERFLOW, in which the value is TRUE. This happens only

when the control system is unstable due to incorrect parameter settings. At the same time, the controller is

suspended and can be reactivated only through re-initialization.

6.15.3 PID_FIXCYCLE

Example in FBD:

The function of this function module is the same as that of the PID controller. The difference is that its cycle

time is set by CYCLE (seconds) instead of being automatically measured by an internal function.

6.16 BCD Conversion Instructions

6.16.1 BCD_TO_INT

This function is used to convert one byte in BCD format into an INT value. The input variable is of BYTE type

and the output variable is of INT type.

When the byte to be converted is not in BCD format, the output is -1.

Example in ST:

i:=BCD_TO_INT(73); (* Result is 49 *)

k:=BCD_TO_INT(151); (* Result is 97 *)

l:=BCD_TO_INT(15); (* Output -1, because it is not in BCD format *)

6.16.2 INT_TO_BCD

This function is used to convert an INT value into a byte in BCD format. The input variable is of INT type and

the output variable is of BYTE type.

When the INT value cannot be converted to a byte in BCD format, the output is 255.

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 157

Example in ST:

i:=INT_TO_BCD(49); (* Result is 73 *)

k:=BCD_TO_INT(97); (* Result is 151 *)

l:=BCD_TO_INT(100); (* Error! Output: 255 *)

6.17 System Instructions

6.17.1 PLC Fault Diagnosis Instructions

These fault diagnosis instructions are applicable to TM and TP series PLCs. For error IDs, please refer to

section 10.2 PLC Error Code Table (for TM and TP series PLCs) to look for the error description.

6.17.1.1 CPU_ERR_DIAGNOSE

This function block is used to read/write CPU fault information.

Example in FBD:

6.17.1.2 MODBUS_RTU_MASTER_DIAGNOSE

This function block is used to read/write Modbus_RTU_Master fault information.

Example in FBD:

6.17.1.3 MODBUS_RTU_SLAVE_DIAGNOSE

This function block is used to read/write Modbus_RTU_Slave fault information.

Example in FBD:

6.17.1.4 MODBUS_TCP_MASTER_DIAGNOSE

This function block is used to read/write Modbus_TCP_Master fault information.

Example in FBD:

6.17.1.5 MODBUS_TCP_SLAVE_DIAGNOSE

This function block is used to read/write Modbus_TCP_Slave fault information.

Example in FBD:

Example in ST:

The use routine of the function block is as follows, and you can choose which function block to use as

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 158

needed. When calling a function block instance, you should point the structure pointer to the corresponding

error information structure array address, which stores the corresponding error diagnosis information;

when multiple errors are diagnosed, the array can store multiple errors. The size of the array depends on

your needs and can be defined by you, but it must be larger than the number of errors diagnosed.

6.17.2 IP and Time Instructions of the TM Controller

6.17.2.1 IP_Mod (only applicable to the TM series PLC)

This function block is used to read/write network parameter information, including IP addresses, subnet

masks, and gateway addresses.

Example in FBD:

6.17.2.2 RTC_Mod (only applicable to the TM series PLC)

This function block is used to read/write the controller time.

Example in FBD:

6.17.3 IP and Time Instructions of the TP Controller

6.17.3.1 RTC_Mod (only applicable to the TP series PLC)

This function block is used to read the controller time.

Example in FBD:

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 159

6.17.3.2 Sys_NetworkConfig (only applicable to the TP series PLC)

This function block is used to set network parameter information, including IP addresses, subnet masks, and

gateway addresses.

Example in FBD:

6.17.3.3 Sys_NetworkInfo (only applicable to the TP series PLC)

This function block is used to read network parameter information, including IP addresses, subnet masks,

and gateway addresses.

Example in FBD:

6.18 Signal Generator

6.18.1 BLINK

This function block is used to generate a pulse signal. The input variable ENABLE is of BOOL type, and

TIMELOW and TIMEHIGH are of TIME type. The output variable OUT is of BOOL type.

If the value of ENABLE is TRUE, BLINK is enabled. OUT is TRUE during the time period set in TIMEHIGH, and

OUT is FALSE during the time period set in TIMELOW.

Example in CFC:

6.18.2 FREQ_MEASURE

This function block is used to measure the (average) frequency value (Hz) of a Boolean input signal. You can

specify the measurement cycle. One cycle refers to the interval between two rising edges of the signal.

Input variables:

Variable Data Type Description

IN BOOL Input signal

PERIODS INT

Cycle number, the time interval between two rising edges, through

which the average frequency of the input signal is calculated, possible

values: 1–10

RESET BOOL Reset all parameters to 0

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 160

Output variables:

Variable Data Type Description

OUT REAL Result frequency (Hz)

VALID BOOL
FALSE until the first measurement cycle is completed, or if the cycle >

3*OUT (indicating an input error)

Example in FBD:

6.18.3 GEN

This function block is used to generate a standard oscillation cycle.

The input variable MODE can be predefined as the GEN_MODE type; BASE as the BOOL type; PERIOD as the

TIME type; CYCLES and AMPLITUDE as the INT type; and RESET as the BOOL type.

MODE is used to define the oscillation cycle mode generated. Here, the enumeration values TRIANGLE and

TRIANGLE_POS are triangle waves, SAWTOOTH_RISE is an increasing sawtooth wave, SAWTOOTH_FALL is a

decreasing sawtooth wave, RECTANGLE is a square wave, SINUS and COSINUS are sine and cosine waves

respectively.

BASE is used to define whether the cycle period is defined using the set time (BASE=TRUE) or whether the

cycle period is defined using a specific cycle value representing the number of times the function block is

called (BASE=FALSE). PERIOD or CYCLES is used to define the corresponding cycle period. AMPLITUDE is

used to define the amplitude produced. When RESET=TRUE, the signal generator is reset to 0.

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 161

Example in CFC:

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 162

6.19 Auxiliary Mathematical Function Blocks

6.19.1 DERIVATIVE

This function block is used to determine local approximate derivatives.

The input variable IN is of REAL type; TM is of DWORD type and represents time in milliseconds; RESET is of

BOOL type, and when its value is TRUE, the function block is reset. The output variable OUT is of REAL type.

To achieve the most accurate result, DERIVATIVE approximates the last 4 values so that the inaccuracies

introduced in the input parameters are minimized.

Example in FBD:

DERIVATIVE input and output:

6.19.2 INTEGRAL

This function block is used to determine approximately the integral.

Similar to DERIVATIVE, the input variable IN is of REAL type; TM is of DWORD type and represents time in

milliseconds; RESET is of BOOL type, and when the value is TRUE, the function block is reset. The output

variable OUT is of REAL type.

The integral is approximated by two step functions and the average of the data is the approximate integral.

Example in FBD:

INTEGRAL input and output:

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 163

6.19.3 LIN_TRAFO

This function block transforms a real number within a range defined by an upper limit value and a lower

limit value into a real number within a range defined by another upper limit value and another lower limit

value.

The following expression is based on this transformation:

(IN-IN_MIN):(IN_MAX-IN)=(OUT-OUT_MIN):(OUT_MAX-OUT)

Input variables:

Variable Data Type Description

IN REAL Input variable

IN_MIN REAL Lower limit value of the variable range

IN_MAX REAL Upper limit value of the variable range

OUT_MIN REAL Lower limit value of the output range

OUT_MAX REAL Upper limit value of the output range

Output variables:

Variable Data Type Description

OUT REAL Output value

ERROR BOOL
Error: TRUE if IN_MIN=IN_MAX, or if IN exceeds the specified

input range

Application example:

A temperature sensor provides Volt-values (input IN). These are to be converted to temperature values in

degree centigrade (output OUT). The input (Volt) values range is defined by the limits IN_MIN=0 and

IN_MAX=10. The output (degree centigrade) value range is defined by the limits OUT_MIN=-20 and

OUT_MAX=40. Thus for an input of 5 V, a temperature of 10℃ will be output.

6.19.4 STATISTICS_INT

This function block is used to calculate some standard statistical values.

The input variable IN is of INT type. When the BOOL type input variable RESET is TRUE, all values are

reinitialized.

The output variable MN is the minimum value of IN, MX is the maximum value of IN, and AVG is the average

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 164

value. The three output variables are all of INT type.

Example in FBD:

6.19.5 STATISTICS_REAL

This function block is similar to STATISTICS_INT, except that the input variable IN and the output variables

MN, MX, and AVG are all of REAL type.

6.19.6 VARIANCE

VARIANCE calculates the variance of an input value.

The input variable IN is of REAL type, RESET is of BOOL type, and the output variable OUT is of REAL type.

This function block is used to calculate the variance of an input value. When RESET=TRUE, VARIANCE will be

reset.

The standard deviation can be easily obtained by taking the square root of the variance.

6.20 Operation Function Blocks

6.20.1 CHARCURVE

This function block is used to map an input value onto a characteristic curve.

The input IN is of INT type and used to set the value to be processed; N is of BYTE type and used to set the

number of points. P is a predefined POINT type based on two integer values (X and Y). The array P[0...10] is

used to generate the characteristic curve.

The output variable OUT is of INT type and used to output processed data; ERR is of BYTE type and used to

display errors.

The points P[0]...P[N-1] in the array must be stored according to the size of their X values; otherwise, ERR

returns a value of 1. If the value of the input IN is not between P[0].X and P[N-1].X, ERR=2, and OUT is the

corresponding limit value P[0].Y or P[N-1].Y.

If the value of N is outside the allowable value range of 2 to 11, then ERR=4.

Example in FBD:

Example in ST:

First, define the array P

VAR

...

CHARACTERISTIC_LINE:CHARCURVE;

KL:ARRAY[0..10]OFPOINT:=[(X:=0,Y:=0),(X:=250,Y:=50),

(X:=500,Y:=150),(X:=750,Y:=400),7((X:=1000,Y:=1000))];

COUNTER:INT;

...

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 165

END_VAR

Then, define a CHARCURVE with an increasing value, for example:

COUNTER:=COUNTER+10;

CHARACTERISTIC_LINE(IN:=COUNTER,N:=5,P:=KL);

Illustration of the resulting curve:

6.20.2 RAMP_INT

This function block is used to limit the rate of increase or decrease of an input value.

The input variables IN, ASCEND, and DESCEND are of INT type: IN is the input value, ASCEND and DESCEND

are the maximum increment and decrement values within a given time. TIMEBASE is of TIME type and used

to set a given time. When the value of RESET is TRUE, RAMP_INT will be reinitialized.

The output variable OUT is of INT type and contains the value with its rate of increase or decrease limited.

When the value of TIMEBASE is t#0s, the output OUT is independent of ASCEND and DESCEND and remains

the same as IN.

Example in CFC:

6.20.3 RAMP_REAL

RAMP_REAL is similar to RAMP_INT in functionality, except that the inputs IN, ASCEND, and DESCEND and

the output OUT of RAMP_REAL are of REAL type.

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

202409 (V1.0) 166

6.21 Analog Value Processing

6.21.1 HYSTERESIS

The inputs of this function block include three INT variables: IN, HIGH, and LOW. The output OUT is of BOOL

type.

If IN is below the lower limit value LOW, OUT is TRUE. If IN is above the upper limit value HIGH, OUT is FALSE.

Example in FBD:

6.21.2 LIMITALARM

This function block is used to check whether the input value is within a certain range.

The input variables IN, HIGH, and LOW are all of INT type. The output variables O, U and IL are all of BOOL

type.

If IN reaches the upper limit value HIGH, O will be set to TRUE, and when IN is below the lower limit value

LOW, U will be set to TRUE. If IN is between LOW and HIGH, IL will be set to TRUE.

Example in FBD:

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 167

7 Motion Control Instructions

7.1 Single Axis Instructions

7.1.1 MC_Power

MC_Power: used to enable the servo drive.

1. Instruction format

Instruction Name Graphical Representation ST Representation

MC_Power
Axis

enabled

MC_Power(

 Axis:=,

 Enable:=,

 bRegulatorOn:=,

 bDriveStart:=,

 Status=>,

 bRegulatorRealState=>,

 bDriveStartRealState=>,

 Busy=>,

 Error=>,

 ErrorID=>);

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Axis Axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

Input variables

Input

Variable
Name Data Type Valid Range

Initial

Value
Description

Enable
Execution

condition
BOOL TRUE, FALSE FALSE

A rising edge of the input will

start the processing of the

function block

bRegulatorOn
Execution

condition
BOOL TRUE, FALSE FALSE If it is TRUE, the axis is enabled

bDriveStart
Execution

condition
BOOL TRUE, FALSE FALSE High level input TRUE

Output variables

Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Status Enabled BOOL TRUE, FALSE FALSE
It becomes TRUE when the

Enabled state is entered

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 168

Output

Variable
Name Data Type Valid Range

Initial

Value
Description

bRegulatorRe

alState
Enabled BOOL TRUE, FALSE FALSE

It becomes TRUE after

bRegulatorOn is set to TRUE

bDriveStartRe

alState

Drive

enabled
BOOL TRUE, FALSE FALSE

It becomes TRUE after

bDriveStart is set to TRUE

Busy Executing BOOL TRUE, FALSE FALSE
It becomes TRUE After the

instruction is received

Error Error flag BOOL TRUE, FALSE FALSE
It becomes TRUE when an

exception occurs.

ErrorID Error ID SMC_ERROR - 0
When an exception occurs, the

error ID is output

3. Function description

When Enable is set to TRUE, the axis specified by Axis enters the operational state. Setting the axis state to

operational can implement axis control. When Enable is set to FALSE, the axis specified by Axis exits the

operational state. After exiting the operational state, the axis does not receive any instruction, and therefore

axis control cannot be implemented. In addition, the axis abnormally responds to motion instructions, but

the axis can execute the MC_Power and MC_Reset instructions.

7.1.2 MC_Halt

MC_Halt: used to stop the motion of a specified axis.

1. Instruction format

Instruction Name Graphical Representation ST Representation

MC_Halt

Instruction to

stop an axis

normally

MC_Halt(

 Axis:=,

 Execute:=,

 Deceleration:=,

 Jerk:=,

 Done=>,

 Busy=>,

 CommandAborted=>,

 Error=>,

 ErrorID=>);

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Axis Axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

Input variables

Input

Variable
Name Data Type Valid Range

Initial

Value
Description

Execute
Execution

condition
BOOL TRUE, FALSE FALSE

A rising edge of the input will

start the processing of the

function block

Deceleration Deceleration LREAL Positive or 0 0
Function block deceleration

speed (μ/S2)

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 169

Input

Variable
Name Data Type Valid Range

Initial

Value
Description

Jerk
Execution

condition
LREAL Positive or 0 0

Specified jerk [instruction

unit/S3]

Output variables

Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Done

Instruction

execution

completed

BOOL TRUE, FALSE FALSE

It is set to TRUE after the axis

instruction is executed

completely

Busy

Instruction

being

executed

BOOL TRUE, FALSE FALSE
It is set to TRUE when the axis

instruction is being executed

CommandAbo

rted

Instruction

aborted
BOOL TRUE, FALSE FALSE

It is set to TRUE when the axis

instruction is aborted

Error Error flag BOOL TRUE, FALSE FALSE
It is set to TRUE when an

exception occurs

ErrorID Error ID SMC_ERROR - 0
When an exception occurs, the

error ID is output

3. Function description

Starting this function block can stop the motion of an axis, but the execution of this function block can be

terminated when another motion axis instruction is started.

This function block can be executed only when the axis is in running state.

This function block is started at the rising edge of the input variable execution condition.

The axis state changes from DiscreteMotion during function block execution and to Standstill after the

function block execution.

7.1.3 MC_Home

MC_Home: used to determine the home position of an axis.

1. Instruction format

Instruction Name Graphical Representation ST Representation

MC_Home

Axis

homing

instruction

MC_Home(

 Axis:=,

 Execute:=,

 Position:=,

 Done=>,

 Busy=>,

 CommandAborted=>,

 Error=>,

 ErrorID=>);

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Axis Axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 170

Input variables

Input

Variable
Name Data Type Valid Range

Initial

Value
Description

Execute
Execution

condition
BOOL TRUE, FALSE FALSE

A rising edge of the input will

start the processing of the

function block

Position

Position

that the

axis

reaches

LREAL Data range 0 Home position of the axis

Output variables

Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Done

Instruction

execution

completed

BOOL TRUE, FALSE FALSE

It is set to TRUE after the axis

instruction is executed

completely

Busy

Instruction

being

executed

BOOL TRUE, FALSE FALSE
It is set to TRUE when the axis

instruction is being executed

CommandAbo

rted

Instruction

aborted
BOOL TRUE, FALSE FALSE

It is set to TRUE when the axis

instruction is aborted

Error Error flag BOOL TRUE, FALSE FALSE
It is set to TRUE when an

exception occurs

ErrorID Error ID SMC_ERROR - 0
When an exception occurs, the

error ID is output

3. Function description

This function block is used for homing and it is started at the rising edge of the input variable execution

condition. The position that the axis of the input variable reaches is the Home position. This function block

can be executed only when the axis is in the Standstill state. In addition, the servo homing mode must be set

before the execution, and the axis must be in the Homing state during the execution.

There are two methods for setting the homing mode:

 Method 1: Manually setting servo function codes, i.e. setting P5.10 on INVT servo DA200.

 Method 2: Setting startup parameters of AX series slaves. If communication modes are used, index and

sub-index data must be set.

Item Index Sub-index Description

Homing method 0x6098 - Set parameters according to specific servo manuals

Origin finding

speed
0x6099 0x01

Generally the speed is defined relatively high, reducing

the homing time

Zero finding

speed
0x6099 0x02 Generally the speed is defined relatively low

ACC/DEC for

homing
0x609A - Acceleration or deceleration during homing

Homing timeout

period
0x2005 0x24

If the homing time exceeds the specified time, the

system reports "Err.601".

The corresponding Settings interface of AX series is as follows:

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 171

7.1.4 MC_MoveAbsolute

MC_MoveAbsolute: used to specify the destination position of absolute coordinates for positioning.

1. Instruction format

Instruction Name Graphical Representation ST Representation

MC_MoveAbs

olute

Axis

absolute

position

control

instruction

MC_MoveAbsolute(

 Axis:=,

 Execute:=,

 Position:=,

 Velocity:=,

 Acceleration:=,

 Deceleration:=,

 Jerk:=,

 Direction:=,

 Done=>,

 Busy=>,

 CommandAborted=>,

 Error=>,

 ErrorID=>);

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Axis Axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

Input variables

Input

Variable
Name Data Type Valid Range

Initial

Value
Description

Execute
Execution

condition
BOOL TRUE, FALSE FALSE

A rising edge of the input

will start the processing of

the function block

Position

Position that

the axis

reaches

LREAL Data range 0 Absolute position of the axis

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 172

Input

Variable
Name Data Type Valid Range

Initial

Value
Description

Velocity
Running

speed
LREAL Data range 0

Max. speed at which the axis

runs to reach the

destination position

Acceleration Acceleration LREAL Data range 0
Acceleration when the

speed increases

Deceleration Deceleration LREAL Data range 0
Deceleration when the

speed decreases

Jerk Jerk LREAL Data range 0

Slope change value of the

curve acceleration or

deceleration

Direction
Instruction

polarity
MC_DIRECTION

Negative,

Shortest,

Positive,

Current,

Fastest

Shortest

Negative: Move backward;

Shortest: Select a direction

depending on the shortest

distance;

Positive: Move forward;

Current: Move in the current

direction;

Fastest: Automatically

choose to move at fastest

manner.

Note: This function is

valid only in rotary mode.

Output variables

Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Done

Instruction

execution

completed

BOOL TRUE, FALSE FALSE

It is set to TRUE after the axis

instruction is executed

completely

Busy

Instruction

being

executed

BOOL TRUE, FALSE FALSE
It is set to TRUE when the axis

instruction is being executed

CommandAbo

rted

Instruction

aborted
BOOL TRUE, FALSE FALSE

It is set to TRUE when the axis

instruction is aborted

Error Error flag BOOL TRUE, FALSE FALSE
It is set to TRUE when an

exception occurs

ErrorID Error ID SMC_ERROR - 0
When an exception occurs,

the error ID is output

3. Function description

This function block is the axis absolute-position instruction. Before executing this function block, the axis is

in the Standstill state. After the function block is started at the rising edge of Execute, the axis is in the

DiscreteMotion state and moves to the specified position. When Jerk is 0, the axis performs trapezoidal

acceleration/deceleration movement; when Velocity, Acceleration, Deceleration, and Jerk are not empty, it

performs S-curve acceleration/deceleration movement.

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 173

Figure 7-1 Trapezoidal Acceleration/Deceleration Action

Speed

Time

DECACC

Target speed

Starting absolute

position

Target absolute

position

Figure 7-2 S-curve Acceleration/Deceleration Action

Speed

Time

DEC
ACC

Target speed

Starting absolute

position

Target absolute

position

4. Timing diagram

 The axis must be in the Standstill state

 The function block is triggered at the rising edge of Execute.

 For the function block, when Done is TRUE, the execution is completed; otherwise, Busy is TRUE.

Execute

Done

Error

CommandAborted

ErrorID 0
Error code

Busy

7.1.5 MC_AccelerationProfile

MC_AccelerationProfile: used to indicate the motion model of the time segment and

acceleration/deceleration profile.

1. Instruction format

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 174

Instruction Name Graphical Representation ST Representation

MC_Accelerat

ionProfile

Acceleratio

n profile

instruction

MC_AccelerationProfile(

 Axis:=,

 TimeAcceleration:=,

 Execute:=,

 ArraySize:=,

 AccelerationScale:=,

 Offset:=,

 Done=>,

 Busy=>,

 CommandAborted=>,

 Error=>,

 ErrorID=>);

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type

Valid

Range

Initial

Value
Description

Axis Axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

TimeAcceleration

Acceleration

time and

description

of the axis

MC_TA_REF - -

Acceleration time and data

description of the axis. The

acceleration data consists of

multiple groups of data

Input variables

Input Variable Name Data Type Valid Range
Initial

Value
Description

Execute
Execution

condition
BOOL

TRUE,

FALSE
FALSE

A rising edge of the input will

start the processing of the

function block

ArraySize
Dynamic

array
INT Data range 0

Number of arrays used in the

motion profile

AccelerationScale
Comprehen

sive factor
LREAL Positive or 0 1

Scale factor of acceleration or

deceleration in MC_TA_REF

Offset Offset LREAL - 0
Overall offset value of

acceleration and deceleration

Output variables

Output Variable Name Data Type Valid Range
Initial

Value
Description

Done

Instruction

execution

completed

BOOL TRUE, FALSE FALSE

It is set to TRUE after the axis

instruction is executed

completely

Busy

Instruction

being

executed

BOOL TRUE, FALSE FALSE
It is set to TRUE when the axis

instruction is being executed

CommandAborted
Instruction

aborted
BOOL TRUE, FALSE FALSE

It is set to TRUE when the axis

instruction is aborted

Error Error flag BOOL TRUE, FALSE FALSE It is set to TRUE when an

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 175

Output Variable Name Data Type Valid Range
Initial

Value
Description

exception occurs

ErrorID Error ID SMC_ERROR - 0
When an exception occurs, the

error ID is output

3. Function description

This function block is used to specify the motion model of the time segment and acceleration/deceleration

profile. During the function block execution, the axis is in the DiscreteMotion state, and it uses the data in

TimeAcceleration. The axis must be in the Standstill state before the function block execution and in the

DiscreteMotion state during the execution. This function block is started at the rising edge of Execute. The

execution of this function block superimposes the speeds of the axis that is in the DiscreteMotion state,

which may cause system faults.

4. Timing diagram

Execute

Done

Busy

Error

CommandAborted

ErrorID 0
Error code

7.1.6 MC_MoveAdditive

MC_MoveAdditive: used for positioning when a specified distance is superimposed to the original position of

an axis.

1. Instruction format

Instruction Name Graphical Representation ST Representation

MC_MoveAdditive

Absolute

motion

superimposition

instruction

MC_MoveAdditive(

 Axis:=,

 Execute:=,

 Distance:=,

 Velocity:=,

 Acceleration:=,

 Deceleration:=,

 Jerk:=,

 Done=>,

 Busy=>,

 CommandAborted=>,

 Error=>,

 ErrorID=>);

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 176

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Axis Axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

Input variables

Input Variable Name Data Type Valid Range
Initial

Value
Description

Execute
Execution

condition
BOOL TRUE, FALSE FALSE

A rising edge of the input will

start the processing of the

function block

Distance

Position that

the axis

reaches

LREAL Data range 0
Superimposed position data of

the axis

Velocity
Running

speed
LREAL Data range 0

Max. speed at which the axis

runs to reach the destination

position

Acceleration Acceleration LREAL Data range 0
Acceleration when the speed

increases

Deceleration Deceleration LREAL Data range 0
Deceleration when the speed

decreases

Jerk Jerk LREAL Data range 0
Slope change value of the curve

acceleration or deceleration

Output variables

Output Variable Name Data Type Valid Range
Initial

Value
Description

Done

Instruction

execution

completed

BOOL TRUE, FALSE FALSE

It is set to TRUE after the axis

instruction is executed

completely

Busy

Instruction

being

executed

BOOL TRUE, FALSE FALSE
It is set to TRUE when the axis

instruction is being executed

CommandAborted
Instruction

aborted
BOOL TRUE, FALSE FALSE

It is set to TRUE when the axis

instruction is aborted

Error Error flag BOOL TRUE, FALSE FALSE
It is set to TRUE when an

exception occurs

ErrorID Error ID SMC_ERROR - 0
When an exception occurs, the

error ID is output

3. Function description

The startup instruction is Execute, the rising edge triggers the function block, and Distance specifies the

superimposed data of the axis. If the running state of this function block is DiscreteMotion, the

CommandAbort values of other instructions are set; in the standstill state, this instruction can run

independently to achieve relative positioning requirements; if Acceleration or Deceleration is zero, the

instruction execution is abnormal, but the axis is in the DiscreteMotion state; When Jerk is 0, the axis

performs trapezoidal acceleration/deceleration movement; when Velocity, Acceleration, Deceleration, and

Jerk are not empty, it performs S-curve acceleration/deceleration movement.

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 177

Figure 7-3 Trapezoidal Acceleration/Deceleration Action

Speed

Time

DECACC

Target speed

Starting absolute

position

Target absolute

position

Figure 7-4 S-curve Acceleration/Deceleration Action

Speed

Time

DEC
ACC

Target speed

Starting absolute

position

Target absolute

position

4. Timing diagram

Example

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 178

Timing description

7.1.7 MC_MoveRelative

MC_Move Relative: used for positioning by specifying the movement distance from the current position.

1. Instruction format

Instruction Name Graphical Representation ST Representation

MC_MoveRelative

Axis

relative

positioning

instruction

MC_MoveRelative(

 Axis:=,

 Execute:=,

 Distance:=,

 Velocity:=,

 Acceleration:=,

 Deceleration:=,

 Jerk:=,

 Done=>,

 Busy=>,

 CommandAborted=>,

 Error=>,

 ErrorID=>);

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Axis Axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

Input variables

Input

Variable
Name Data Type Valid Range

Initial

Value
Description

Execute
Execution

condition
BOOL TRUE, FALSE FALSE

A rising edge of the input will

start the processing of the

function block (FALSE→TRUE)

Distance

Relative

position of

motion

LREAL Data range 0 The data is a relative position

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 179

Input

Variable
Name Data Type Valid Range

Initial

Value
Description

Velocity
Running

speed
LREAL Data range 0

Max. speed at which the axis

runs to reach the destination

position

Acceleration Acceleration LREAL Data range 0
Acceleration when the speed

increases

Deceleration Deceleration LREAL Data range 0
Deceleration when the speed

decreases

Jerk Jerk LREAL Data range 0
Slope change value of the curve

acceleration or deceleration

Output variables

Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Done

Instruction

execution

completed

BOOL TRUE, FALSE FALSE

It is set to TRUE after the axis

instruction is executed

completely

Busy

Instruction

being

executed

BOOL TRUE, FALSE FALSE
It is set to TRUE when the axis

instruction is being executed

CommandAbo

rted

Instruction

aborted
BOOL TRUE, FALSE FALSE

It is set to TRUE when the axis

instruction is aborted

Error Error flag BOOL TRUE, FALSE FALSE
It is set to TRUE when an

exception occurs

ErrorID Error ID SMC_ERROR - 0
When an exception occurs, the

error ID is output

3. Function description

The axis must be in the Standstill state before the function block execution and in the DiscreteMotion state

during the execution. Pay attention to the axis state during the execution to prevent other instructions from

interrupting the instruction execution of the axis. The startup instruction is Execute, and the rising edge

(FALSE→TRUE) triggers the function block. The startup instruction can repeatedly make the rising edge valid

when the axis is in the DiscreteMotion state, which always refreshes the position. When Acceleration or

Deceleration is 0, the instruction execution is abnormal, but the axis is in the DiscreteMotion state.

Figure 7-5 Trapezoidal Acceleration/Deceleration Action

Speed

Time

DECACC

Target speed

Starting absolute

position

Target absolute

position

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 180

Figure 7-6 S-curve Acceleration/Deceleration Action

Speed

Time

DEC
ACC

Target speed

Starting absolute

position

Target absolute

position

4. Timing diagram

Execute

Done

Error

CommandAborted

ErrorID 0
Error code

Busy

This function block is triggered at the rising edge of Execute. When Busy is set, the function block is being

executed. After the execution is completed, Done is set.

7.1.8 MC_MoveSuperImposed

MC_MoveSuperImposed: used to superimpose speed and position data on the speed and position data in

the running instruction, which brings no change to the entire original instruction execution time model.

1. Instruction format

Instruction Name Graphical Representation ST Representation

MC_MoveSuperImposed

Relative motion

superimposition

instruction

MC_MoveSuperImposed(

 Axis:=,

 Execute:=,

 Distance:=,

 VelocityDiff:=,

 Acceleration:=,

 Deceleration:=,

 Jerk:=,

 Done=>,

 Busy=>,

 CommandAborted=>,

 Error=>,

 ErrorID=>);

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 181

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Axis Axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

Input variables

Input Variable Name Data Type Valid Range
Initial

Value
Description

Execute
Execution

condition
BOOL TRUE, FALSE FALSE

A rising edge of the input

will start the processing of

the function block

(FALSE→TRUE)

Distance

Relative

position of

motion

LREAL Data range 0
The data is a relative

position

VelocityDiff
Superimposition

speed
LREAL Data range 0

Superimposition speed for

axis running

Acceleration Acceleration LREAL Data range 0
Acceleration when the

speed increases

Deceleration Deceleration LREAL Data range 0
Deceleration when the

speed decreases

Jerk Jerk LREAL Data range 0

Slope change value of the

curve acceleration or

deceleration

Output variables

Output Variable Name Data Type Valid Range
Initial

Value
Description

Done

Instruction

execution

completed

BOOL TRUE, FALSE FALSE

It is set to TRUE after the axis

instruction is executed

completely

Busy

Instruction

being

executed

BOOL TRUE, FALSE FALSE
It is set to TRUE when the axis

instruction is being executed

CommandAborted
Instruction

aborted
BOOL TRUE, FALSE FALSE

It is set to TRUE when the axis

instruction is aborted

Error Error flag BOOL TRUE, FALSE FALSE
It is set to TRUE when an

exception occurs

ErrorID Error ID SMC_ERROR - 0
When an exception occurs, the

error ID is output

3. Function description

This function block is the position and speed superimposition instruction, which is started at the rising edge

of Execute. VelocityDiff and Distance are superimposed to the speed and position of other instructions. In

the motion mode, MC_MoveSuperImposed can be superimposed onto any other instruction. This function

block can solve the error compensation for the clearance between the belt and gear, which can ensure

motion consistency. To execute the function block, you need to set the parameter superimposition position.

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 182

Figure 7-7 Trapezoidal Acceleration/Deceleration Action

Speed

Time

DECACC

Target speed

Starting absolute

position

Target absolute

position

Figure 7-8 S-curve Acceleration/Deceleration Action

Speed

Time

DEC
ACC

Target speed

Starting absolute

position

Target absolute

position

4. Timing diagram

Example

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 183

Timing description

7.1.9 MC_MoveVelocity

MC_MoveVelocity: used to simulate speed control by using the servo drive position control mode.
1. Instruction format

Instruction Name Graphical Representation ST Representation

MC_MoveVelocity

Speed

control

instruction

MC_MoveVelocity(

 Axis:=,

 Execute:=,

 Velocity:=,

 Acceleration:=,

 Deceleration:=,

 Jerk:=,

 Direction:=,

 InVelocity=>,

 Busy=>,

 CommandAborted=>,

 Error=>,

 ErrorID=>);

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Axis Axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 184

Input variables

Input Variable Name Data Type Valid Range
Initial

Value
Description

Execute
Execution

condition
BOOL TRUE, FALSE FALSE

A rising edge of the input will

start the processing of the

function block (FALSE→TRUE)

Velocity
Running

speed
LREAL Data range 0 Specified speed for running

Acceleration Acceleration LREAL Data range 0
Acceleration when the speed

increases

Deceleration Deceleration LREAL Data range 0
Deceleration when the speed

decreases

Jerk Jerk LREAL Data range 0

Slope change value of the

curve acceleration or

deceleration

Direction
Running

direction
MC_Direction

Positive,

Negative,

Current

Current Running direction

Output variables

Output Variable Name Data Type Valid Range
Initial

Value
Description

Done

Instruction

execution

completed

BOOL TRUE, FALSE FALSE

It is set to TRUE after the axis

instruction is executed

completely

Busy

Instruction

being

executed

BOOL TRUE, FALSE FALSE
It is set to TRUE when the axis

instruction is being executed

CommandAborted
Instruction

aborted
BOOL TRUE, FALSE FALSE

It is set to TRUE when the axis

instruction is aborted

Error Error flag BOOL TRUE, FALSE FALSE
It is set to TRUE when an

exception occurs

ErrorID Error ID SMC_ERROR - 0
When an exception occurs, the

error ID is output

3. Function description

This function block is triggered at the rising edge of Execute. The drive performs speed control according to

the value of Velocity. InVelocity indicates that the running speed in the function block has reached the

specified value.

4. Timing diagram

Example

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 185

Timing description

7.1.10 MC_PositionProfile

MC_PositionProfile: used to indicate the motion model of the time segment and position profile.
1. Instruction format

Instruction Name Graphical Representation ST Representation

MC_PositionProfile

Position

profile

instruction

MC_PositionProfile(

 Axis:=,

 TimePosition:=,

 Execute:=,

 ArraySize:=,

 PositionScale:=,

 Offset:=,

 Done=>,

 Busy=>,

 CommandAborted=>,

 Error=>,

 ErrorID=>);

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Axis Axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

TimePosition

Running time

and position

description

MC_TP_REF - -

Running time and position

data description of the axis.

The data consists of multiple

groups of data

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 186

Input variables

Input Variable Name Data Type Valid Range
Initial

Value
Description

Execute
Execution

condition
BOOL TRUE, FALSE FALSE

A rising edge of the input will

start the processing of the

function block

(FALSE→TRUE)

ArraySize Array size INT Data range 0
Number of arrays used in the

motion profile

PositionScale
Comprehensive

factor
LREAL Positive or 0 0

Position scaling factor in

MC_TP_REF

Offset Offset LREAL - 0
Overall offset value of the

position

Output variables

Output Variable Name Data Type Valid Range
Initial

Value
Description

Done

Instruction

execution

completed

BOOL TRUE, FALSE FALSE

It is set to TRUE after the axis

instruction is executed

completely

Busy

Instruction

being

executed

BOOL TRUE, FALSE FALSE
It is set to TRUE when the axis

instruction is being executed

CommandAborted
Instruction

aborted
BOOL TRUE, FALSE FALSE

It is set to TRUE when the axis

instruction is aborted

Error Error flag BOOL TRUE, FALSE FALSE
It is set to TRUE when an

exception occurs

ErrorID Error ID SMC_ERROR - 0
When an exception occurs, the

error ID is output

3. Function description

This function block is used to specify the motion model of the time segment and position profile, using the

data in TimePosition. Before executing this function block, the axis is in the Standstill state. This function

block is triggered at the rising edge of Execute. The axis is in the DiscreteMotion state during the function

block execution.

4. Timing diagram

Execute

Done

Error

CommandAborted

ErrorID 0
Error code

Busy

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 187

7.1.11 MC_ReadActualPosition

MC_ReadActualPosition: used to read the actual position of the drive and save it to a user-defined variable.

1. Instruction format

Instruction Name Graphical Representation ST Representation

MC_

ReadActualPosition

Actual

position

reading

instruction

MC_ReadActualPosition(

 Axis:=,

 Enable:=,

 Valid=>,

 Busy=>,

 Error=>,

 ErrorID=>,

 Position=>);

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Axis Axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

Input variables

Input Variable Name Data Type Valid Range
Initial

Value
Description

Enable
Execution

condition
BOOL TRUE, FALSE FALSE

A rising edge of the input will

start the processing of the

function block (FALSE→TRUE)

Output variables

Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Valid

Obtainable

flag of position

data

BOOL
TRUE,

FALSE
FALSE

It is set to TRUE when the drive

position can be obtained

correctly.

Busy
Instruction

being executed
BOOL

TRUE,

FALSE
FALSE

It is set to TRUE when the axis

instruction is being executed

Error Error flag BOOL
TRUE,

FALSE
FALSE

It is set to TRUE when an

exception occurs

ErrorID Error ID SMC_ERROR - 0
When an exception occurs, the

error ID is output

Position
Obtained axis

position
LREAL

Axis

position
0 Axis position data that is read

3. Function description

This function block is triggered at the rising edge of Execute and it can read the axis position value. When

Valid is TRUE, the read position value is valid. This function block can be repeatedly called, and the invoking

does not affect the other.

4. Timing diagram

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 188

Busy

Enable

Valid

Position

1
0

1
0

1
0

t

7.1.12 MC_ReadBoolParameter

MC_ReadBoolParameter: used to read the bit parameters of the drive axis and save them to user-defined

variables.
1. Instruction format

Instruction Name Graphical Representation ST Representation

MC_ReadBoolPara

meter

Axis bit

paramet

er

reading

instructi

on

MC_ReadBoolParameter(

 Axis:=,

 Enable:=,

 ParameterNumber:=,

 Valid=>,

 Busy=>,

 Error=>,

 ErrorID=>,

 Value=>);

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Axis Axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

Input variables

Input Variable Name
Data

Type
Valid Range

Initial

Value
Description

Enable
Execution

condition
BOOL TRUE, FALSE FALSE

When it is set to TRUE, this

function block is started

ParameterNumber

Axis

parameter

number

DINT - 0
Access index, sub-index, and

number of the axis parameter

Note:

 ParameterNumber (DINT) = -DWORD_TO_DINT(SHL(USINT_TO_DOWRD(usiDataLength), 24) (Data

length in the object dictionary) + SHL(UINT_TO_DWORD(uiIndex), 8) (Index in the object dictionary-16

bits) + usisubIndex (Sub-index in the object dictionary-8 bits).

 usiDataLength: Fill in according to the number of bytes: Byte 1 is 16#01; byte 2 is 16#02; byte 4 is 16#04,

and so on.

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 189

Output variables

Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Valid
Obtainable flag of

position data
BOOL TRUE, FALSE FALSE

It is set to TRUE when the drive

position can be obtained

correctly.

Busy
Instruction being

executed
BOOL TRUE, FALSE FALSE

It is set to TRUE when the axis

instruction is being executed

Error Error flag BOOL TRUE, FALSE FALSE
It is set to TRUE when an

exception occurs

ErrorID Error ID SMC_ERROR - 0
When an exception occurs, the

error ID is output

Value
Obtained axis

position
BOOL TRUE, FALSE FALSE

The value of the parameter

ParameterNumber is read

3. Function description

Bit data status is read from the drive by executing MC_ReadBoolParam, which is valid when Enable is TRUE.

This function block can be repeatedly executed without affecting each other. When Valid is TRUE, the bit

status data is valid; when Busy is TRUE, the function block is being executed.

4. Timing diagram

Busy

Enable

Valid

Value

1
0

1
0

1
0

t

7.1.13 MC_ReadAxisError

MC_Read AxisError: used to read axis error information and save it to user-defined variables.

1. Instruction format

Instruction Name Graphical Representation ST Representation

MC_ReadAxisError

Axis error

reading

instruction

MC_ReadAxisError(

 Axis:=,

 Enable:=,

 Valid=>,

 Busy=>,

 Error=>,

 ErrorID=>,

 AxisError=>,

 AxisErrorID=>,

 SWEndSwitchActive=>);

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 190

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Axis Axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

Input variables

Input

Variable
Name Data Type Valid Range

Initial

Value
Description

Enable
Execution

condition
BOOL TRUE, FALSE FALSE

When it is set to TRUE, this

function block is started

Output variables

Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Valid
Error data

obtaining flag
BOOL TRUE, FALSE FALSE

It is set to TRUE when the drive

position can be obtained

correctly.

Busy

Instruction

being

executed

BOOL TRUE, FALSE FALSE
It is set to TRUE when the axis

instruction is being executed

Error Error flag BOOL TRUE, FALSE FALSE
It is set to TRUE when an

exception occurs

ErrorID Error ID SMC_ERROR TRUE, FALSE FALSE
When an exception occurs, the

error ID is output

AxisError Axis error flag BOOL TRUE, FALSE FALSE
When an error is read, the

corresponding flag is set

AxisErrorID Axis error ID DWORD - 0 The axis error ID is read

SWEndSwitch

Active

Soft limit

switch valid
BOOL TRUE, FALSE FALSE

The soft limit switch status is

checked during instruction

reading

3. Function description

This function block is used to read axis error information, and it is valid when Enable is TRUE. When Valid is

TRUE, AxisError and AxisErrorID are valid data values; when Busy is TRUE, the current function block is being

executed. This function block can be repeatedly executed without affecting each other.

7.1.14 MC_ReadStatus

MC_ReadStatus: used to read axis status data and save it to user-defined variables.
1. Instruction format

Instruction Name Graphical Representation ST Representation

MC_ReadStatus

Axis status

reading

instruction

MC_ReadStatus(

 Axis:=,

 Enable:=,

 Valid=>,

 Busy=>,

 Error=>,

 ErrorID=>,

 Disabled=>,

 Errorstop=>,

 Stopping=>,

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 191

Instruction Name Graphical Representation ST Representation

 StandStill=>,

 DiscreteMotion=>,

 ContinuousMotion=>,

 SynchronizedMotion=>,

 Homing=>,

 ConstantVelocity=>,

 Accelerating=>,

 Decelerating=>,

 FBErrorOccured=>);

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Axis Axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

Input variables

Input Variable Name Data Type Valid Range
Initial

Value
Description

Enable
Execution

condition
BOOL TRUE, FALSE FALSE

When it is set to TRUE, this

function block is started

Output variables

Output Variable Name Data Type Valid Range
Initial

Value
Description

Valid
Error data

obtaining flag
BOOL TRUE, FALSE FALSE

It is set to TRUE when the drive

position can be obtained

correctly.

Busy

Instruction

being

executed

BOOL TRUE, FALSE FALSE
It is set to TRUE when the axis

instruction is being executed

Error Error flag BOOL TRUE, FALSE FALSE
It is set to TRUE when an

exception occurs

ErrorID Error ID SMC_ERROR - 0
When an exception occurs, the

error ID is output

Disabled Axis disabled BOOL TRUE, FALSE FALSE
It is set to TRUE when the axis is

disabled

Errorstop
Axis error

status
BOOL TRUE, FALSE FALSE

It is set to TRUE when the axis is

running abnormally

Stopping
Axis in stop

process
BOOL TRUE, FALSE FALSE

It is set to TRUE when the axis is

in the stop process

StandStill
Standard

status of axis
BOOL TRUE, FALSE FALSE

It is set to TRUE when the axis is

in the StandStill state (able to

run)

DiscreteMotion

Discrete

motion status

of axis

BOOL TRUE, FALSE FALSE
It is set to TRUE when the axis is

in the DiscreteMotion state

ContinuousMoti

on

Continuous

motion status

of axis

BOOL TRUE, FALSE FALSE
It is set to TRUE when the axis is

in the ContinuousMotion state

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 192

Output Variable Name Data Type Valid Range
Initial

Value
Description

SynchronizedMo

tion

Synchronous

running status

of axis

BOOL TRUE, FALSE FALSE

It is set to TRUE when the axis is

in the SynchronizedMotion

state

Homing
Homing status

of axis
BOOL TRUE, FALSE FALSE

It is set to TRUE when the axis is

in the Homing state

ConstantVelocity
Axis running

speed reached
BOOL TRUE, FALSE FALSE

It is set to TRUE when the axis

reaches the running speed

Accelerating
Acceleration

status of axis
BOOL TRUE, FALSE FALSE

It is set to TRUE when the axis is

in the Accelerating state

Dccelerating
Deceleration

status of axis
BOOL TRUE, FALSE FALSE

It is set to TRUE when the axis is

in the Dccelerating state

FBErrorOccured
Axis function

block error flag
BOOL TRUE, FALSE FALSE

It is set to TRUE when the axis

function block encounters an

error

3. Function description

Axis status is read by executing MC_ReadStatus, which is valid when Enable is TRUE. This function block can

be repeatedly executed without affecting each other. To execute the function block, set Enable to TRUE.

When Valid is TRUE, the axis status data is valid; when Busy is TRUE, the function block is being executed.

7.1.15 MC_ReadParameter

MC_ReadParameter: used to read drive axis parameters and saves them to user-defined variables.

1. Instruction format

Instruction Name Graphical Representation ST Representation

MC_ReadParameter

Axis

parameter

reading

instruction

MC_ReadParameter(

 Axis:=,

 Enable:=,

 ParameterNumber:=,

 Valid=>,

 Busy=>,

 Error=>,

 ErrorID=>,

 Value=>);

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Axis Axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

Input variables

Input Variable Name Data Type Valid Range
Initial

Value
Description

Enable
Execution

condition
BOOL TRUE, FALSE FALSE

When it is set to TRUE, this

function block is started

ParameterNumber

Axis

parameter

number

DINT - 0
Access index, sub-index, and

number of the axis parameter

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 193

Note:

 ParameterNumber (DINT) = -DWORD_TO_DINT(SHL(USINT_TO_DOWRD(usiDataLength), 24) (Data

length in the object dictionary) + SHL(UINT_TO_DWORD(uiIndex), 8) (Index in the object dictionary-16

bits) + usisubIndex (Sub-index in the object dictionary-8 bits).

 usiDataLength: Fill in according to the number of bytes: Byte 1 is 16#01; byte 2 is 16#02; byte 4 is 16#04,

and so on.

Output variables

Output

Variable
Name Data Type

Valid

Range

Initial

Value
Description

Valid
Obtainable flag of

position data
BOOL

TRUE,

FALSE
FALSE

It is set to TRUE when the drive

position can be obtained

correctly.

Busy
Instruction being

executed
BOOL

TRUE,

FALSE
FALSE

It is set to TRUE when the axis

instruction is being executed

Error Error flag BOOL
TRUE,

FALSE
FALSE

It is set to TRUE when an

exception occurs

ErrorID Error ID SMC_ERROR - 0
When an exception occurs, the

error ID is output

Value
Obtained axis

position
BOOL

TRUE,

FALSE
FALSE

The value of the parameter

ParameterNumber is read

3. Function description

Bit data status is read from the drive by executing MC_ReadBoolParam, which is valid when Enable is TRUE.

The function block can be repeatedly executed without affecting each other. When Valid is TRUE, the bit

status data is valid; when Busy is TRUE, the function block is being executed.

4. Timing diagram

Busy

Enable

Valid

Value

1
0

1
0

1
0

t

7.1.16 MC_Reset

MC_Reset: used to reset all errors of an axis.

1. Instruction format

Instruction Name Graphical Representation ST Representation

MC_Reset

Axis error

reset

instruction

MC_Reset(

 Axis:=,

 Execute:=,

 Done=>,

 Busy=>,

 Error=>,

 ErrorID=>);

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 194

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Axis Axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

Input variables

Input Variable Name Data Type Valid Range
Initial

Value
Description

Execute
Execution

condition
BOOL TRUE, FALSE FALSE

A rising edge will start the

processing of the function

block

Output variables

Output Variable Name Data Type Valid Range
Initial

Value
Description

Done

Instruction

execution

completed

BOOL
TRUE,

FALSE
FALSE

It is set to TRUE after the axis

instruction is executed

completely

Busy

Instruction

being

executed

BOOL
TRUE,

FALSE
FALSE

It is set to TRUE when the axis

instruction is being executed

Error Error flag BOOL
TRUE,

FALSE
FALSE

It is set to TRUE when an

exception occurs

ErrorID Error ID SMC_ERROR - 0
When an exception occurs, the

error ID is output

3. Function description

This function can change the axis status from Errorstop to Standstill when the axis is in normal

communication. If the axis cannot be reset from the Errostop state and Axis.bCommunication is FALSE, you

must re-establish the communication between the master and slave axes.

4. Timing diagram

Execute

Done

Busy

Error

ErrorID 0
Error

code

Axis communication

error, etc.

7.1.17 MC_Stop

MC_Stop: used to instruct an axis to decelerate to stop.

1. Instruction format

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 195

Instruction Name Graphical Representation ST Representation

MC_Stop
Axis stop

instruction

MC_Stop(

 Axis:=,

 Execute:=,

 Deceleration:=,

 Jerk:=,

 Done=>,

 Busy=>,

 Error=>,

 ErrorID=>);

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type

Valid

Range

Initial

Value
Description

Axis Axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

Input variables

Input Variable Name
Data

Type
Valid Range

Initial

Value
Description

Execute
Execution

condition
BOOL TRUE, FALSE FALSE

A rising edge will start the

processing of the function block

Deceleration Deceleration LREAL Positive or 0 0
Function block deceleration

speed (μ/S2)

Jerk Jerk LREAL Positive or 0 0
Specified jerk [instruction

unit/S3]

Output variables

Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Done

Instruction

execution

completed

BOOL TRUE, FALSE FALSE

It is set to TRUE after the axis

instruction is executed

completely

Busy

Instruction

being

executed

BOOL TRUE, FALSE FALSE
It is set to TRUE when the axis

instruction is being executed

Error Error flag BOOL TRUE, FALSE FALSE
It is set to TRUE when an

exception occurs

ErrorID Error ID SMC_ERROR - 0
When an exception occurs, the

error ID is output

3. Function description

This function block is used to stop the motion of an axis that is in normal running. It does not take effect to

the axis when it is in the Stopping state.

If the axis is in the Stopping state, Execute is FALSE, and Done is TRUE, and the axis status changes to

Standstill. The function block is started at the rising edge of Execute. If Busy is TRUE when MC_Stop is in the

execution process, the restart of MC_Stop will cause the axis to enter the Errorstop state. When the MC_Stop

(forced stop) instruction is started, the instruction in execution changes to execute CommandAborted

(execution aborted).

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 196

4. Timing diagram

Example

Flag bit difference in executing MC_MoveVelocity and MC_Stop:

7.1.18 MC_VelocityProfile

MC_VelocityProfile: used to indicate the motion model of the time segment and speed profile.

1. Instruction format

Instruction Name Graphical Representation ST Representation

MC_VelocityProfile

Speed

profile

instructi

on

MC_VelocityProfile(

 Axis:=,

 TimeVelocity:=,

 Execute:=,

 ArraySize:=,

 VelocityScale:=,

 Offset:=,

 Done=>,

 Busy=>,

 CommandAborted=>,

 Error=>,

 ErrorID=>);

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type

Valid

Range

Initial

Value
Description

Axis Axis AXIS_REF - - Reference to axis, that is, an

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 197

Input/Output

Variable
Name Data Type

Valid

Range

Initial

Value
Description

instance of AXIS_REF_SM3

TimeVelocity

Running

time and

speed

description

of axis

MC_TV_REF - -

Running time and speed data

description of the axis. The

data consists of multiple

groups of data

Input variables

Input Variable Name Data Type
Valid

Range

Initial

Value
Description

Execute
Execution

condition
BOOL

TRUE,

FALSE
FALSE

A rising edge will start the

processing of the function

block

ArraySize
Dynamic

array
INT - 0

Number of arrays used in the

motion profile

VelocityScale
Speed

factor
LREAL Positive or 0 1 Speed scaling factor

Offset Offset LREAL - 0
Overall offset value of the

speed

Output variables

Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Done

Instruction

execution

completed

BOOL TRUE, FALSE FALSE

It is set to TRUE after the

axis instruction is executed

completely

Busy

Instruction

being

executed

BOOL TRUE, FALSE FALSE

It is set to TRUE when the

axis instruction is being

executed

Error Error flag BOOL TRUE, FALSE FALSE
It is set to TRUE when an

exception occurs

ErrorID Error ID SMC_ERROR - 0
When an exception occurs,

the error ID is output

3. Function description

This function block is used to specify the motion model of the time segment and speed profile. The axis

running mode is Continuous Motion, and the function block uses the data in TimeVelocity. The axis must be

in the Standstill state before the function block execution and in the DiscreteMotion state during the

execution. This function block is started at the rising edge of Execute. This function block can be repeatedly

executed when the axis is in the DiscreteMotion state. TimeVelocity is of the MC_TV_REF data type.

MC_TV_REF is described as follows:

Member Type Initial Value Description

Number_of_pairs INT 0
Number of profile path

segments

IsAbsolute BOOL TRUE
Absolute motion (TRUE) or

relative motion (FALSE)

MC_TV_Array ARRAY[1...N] OF SMC_TV - Data arrays of time and speed

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 198

SMC_TV is described as follows:

Member Type Initial Value Description

delta_time TIME TIME#0ms Time of a speed segment

Velocity LREAL 0 Speed that is recorded currently

Note: The entire speed process represents the S curve with acceleration and deceleration, and the speed of

each profile segment is calculated by superimposition; during repeated running, the speed is also

superimposed to avoid the occurrence of speed limit exceeding; before repeated running, the axis status

must be set to Standstill.

4. Timing diagram

Execute

Done

Error

CommandAborted

ErrorID 0
Error code

Busy

7.1.19 MC_WriteBoolParameter

MC_WriteBoolParameter: used to set the bit parameters of the drive axis.

1. Instruction format

Instruction Name Graphical Representation ST Representation

MC_WriteBool

Parameter

Axis bit

paramet

er

setting

instructi

on

MC_WriteBoolParameter(

 Axis:=,

 Execute:=,

 ParameterNumber:=,

 Value:=,

 Done=>,

 Busy=>,

 Error=>,

 ErrorID=>);

2. Associated variables

Input/output variables

Input/Output

Variable
Name

Data

Type
Valid Range

Initial

Value
Description

Axis Axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

Input variables

Input Variable Name
Data

Type
Valid Range

Initial

Value
Description

Enable Execution BOOL TRUE, FALSE When it is set to TRUE, this

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 199

Input Variable Name
Data

Type
Valid Range

Initial

Value
Description

condition FALSE function block is started

ParameterNumber

Axis

parameter

number

DINT - 0
Access index, sub-index, and

number of the axis parameter

Value Setting BOOL
TRUE,

FALSE
FALSE Used to set the bit parameters

Note:

 ParameterNumber (DINT) = -DWORD_TO_DINT(SHL(USINT_TO_DOWRD(usiDataLength), 24) (Data

length in the object dictionary) + SHL(UINT_TO_DWORD(uiIndex), 8) (Index in the object dictionary-16

bits) + usisubIndex (Sub-index in the object dictionary-8 bits).

 usiDataLength: Fill in according to the number of bytes: Byte 1 is 16#01; byte 2 is 16#02; byte 4 is 16#04,

and so on.

Output variables

Output Variable Name Data Type Valid Range
Initial

Value
Description

Done
Setting

succeeded
BOOL TRUE, FALSE FALSE

It is set to TRUE when the

setting operation

succeeds.

Busy

Instruction

being

executed

BOOL TRUE, FALSE FALSE

It is set to TRUE when the

axis instruction is being

executed

Error Error flag BOOL TRUE, FALSE FALSE
It is set to TRUE when an

exception occurs

ErrorID Error ID SMC_ERROR - 0
When an exception occurs,

the error ID is output

3. Function description

Axis bit parameters are set by executing MC_WriteBoolParameter, which is started at the rising edge. This

function block can be repeatedly executed

without affecting each other.

4. Timing diagram

 The function block can be triggered only at the rising edge.

 When Done is TRUE, the setting operation is successful.

 When Busy is TRUE, the function block is being executed.

Timing description:

Busy

Execute

Valid

1
0

1
0

1
0

t

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 200

7.1.20 MC_WriteParameter

MC_WriteParameter: used to set the parameters of the drive axis.

1. Instruction format

Instruction Name Graphical Representation ST Representation

MC_WriteParam

eter

Axis

parameter

setting

instruction

MC_WriteParameter(

 Axis:=,

 Execute:=,

 ParameterNumber:=,

 Value:=,

 Done=>,

 Busy=>,

 Error=>,

 ErrorID=>);

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Axis Axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

Input variables

Input Variable Name Data Type Valid Range
Initial

Value
Description

Enable
Execution

condition
BOOL TRUE, FALSE FALSE

When it is set to TRUE, this

function block is started

ParameterNumber

Axis

parameter

number

DINT - 0
Access index, sub-index, and

number of the axis parameter

Value Setting BOOL TRUE, FALSE FALSE
Used to set the bit

parameters

Note:

 ParameterNumber (DINT) = -DWORD_TO_DINT(SHL(USINT_TO_DOWRD(usiDataLength), 24) (Data

length in the object dictionary) + SHL(UINT_TO_DWORD(uiIndex), 8) (Index in the object dictionary-16

bits) + usisubIndex (Sub-index in the object dictionary-8 bits).

 usiDataLength: Fill in according to the number of bytes: Byte 1 is 16#01; byte 2 is 16#02; byte 4 is 16#04,

and so on.

Output variables

Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Done
Setting

succeeded
BOOL TRUE, FALSE FALSE

It is set to TRUE when the setting

operation succeeds.

Busy

Instruction

being

executed

BOOL TRUE, FALSE FALSE
It is set to TRUE when the axis

instruction is being executed

Error Error flag BOOL TRUE, FALSE FALSE
It is set to TRUE when an

exception occurs

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 201

Output

Variable
Name Data Type Valid Range

Initial

Value
Description

ErrorID Error ID SMC_ERROR - 0
When an exception occurs, the

error ID is output

3. Function description

Axis bit parameters are set by executing MC_WriteParameter, which is started at the rising edge. This

function block can be repeatedly executed without affecting each other.

4. Timing diagram

 The function block can be triggered only at the rising edge.

 When Done is TRUE, the setting operation is successful.

 When Busy is TRUE, the function block is being executed.

Timing description:

Busy

Execute

Valid

1
0

1
0

1
0

t

7.1.21 MC_AbortTrigger

MC_AbortTrigger: used to terminate the association features of latch related events, in conjunction with

MC_Touchprobe.

1. Instruction format

Instruction Name Graphical Representation ST Representation

MC_AbortTrigger

Event

association

termination

instruction

MC_AbortTrigger(

 Axis:=,

 TriggerInput:=,

 Execute:=,

 Done=>,

 Busy=>,

 Error=>,

 ErrorID=>);

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Axis Axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

TriggerInput
Trigger

signal
TRIGGER_REF

Description of trigger signal

and attributes

TRIGGER_REF description:

Input/Output

Variable
Name Data Type Initial Value Description

TRIGGER_REF iTriggerNumber INT -1
Used to select a function to lock in

the drive mode:

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 202

Input/Output

Variable
Name Data Type Initial Value Description

0: Rising edge latching for probe 1

1: Falling edge latching for probe 1

2: Rising edge latching for probe 2

3: Falling edge latching for probe 2

bFastLatching BOOL TRUE

Used to specify the latching trigger

mode:

TRUE: Driver mode

FALSE: Controller mode

bInput BOOL FALSE
When bFastLatching=FALSE, the

controller inputs a signal for trigger

bActive BOOL FALSE Valid signal for trigger

Input variables

Input Variable Name Data Type Valid Range
Initial

Value
Description

Execute
Execution

condition
BOOL TRUE, FALSE FALSE

A rising edge will start the

processing of the function

block

Output variables

Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Done
Setting

succeeded
BOOL TRUE, FALSE FALSE

It is set to TRUE when the

setting operation succeeds.

Busy

Instruction

being

executed

BOOL TRUE, FALSE FALSE

It is set to TRUE when the

axis instruction is being

executed

Error Error flag BOOL TRUE, FALSE FALSE
It is set to TRUE when an

exception occurs

ErrorID Error ID SMC_ERROR - 0
When an exception occurs,

the error ID is output

3. Function description

The MC_AbortTrigger function block is used to terminate the association between the trigger

signal/attribute and the associated trigger instruction. The function block can be triggered only at the rising

edge of Execute. When Done is TRUE, the setting operation is successful; when Busy is TRUE, the function

block is being executed.

7.1.22 MC_ReadActualTorque

MC_ReadActualTorque: used to read the actual torque of the drive and save it to a user-defined variable.
1. Instruction format

Instruction Name Graphical Representation ST Representation

MC_ReadActualT

orque

Actual

torque

reading

instructi

on

MC_ReadActualTorque(

 Axis:=,

 Enable:=,

 Valid=>,

 Busy=>,

 Error=>,

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 203

Instruction Name Graphical Representation ST Representation

 ErrorID=>,

 Torque=>);

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Axis Axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

Input variables

Input

Variable
Name Data Type Valid Range

Initial

Value
Description

Enable
Execution

condition
BOOL TRUE, FALSE FALSE

When it is set to TRUE, this

function block is started

Output variables

Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Valid
Actual torque

obtaining flag
BOOL TRUE, FALSE FALSE

It is set to TRUE when the

drive torque can be obtained

correctly

Busy
Instruction being

executed
BOOL TRUE, FALSE FALSE

It is set to TRUE when the axis

instruction is being executed

Error Error flag BOOL TRUE, FALSE FALSE
It is set to TRUE when an

exception occurs

ErrorID Error ID SMC_ERROR - 0
When an exception occurs,

the error ID is output

Torque
Actual torque

obtaining
LREAL Torque 0

Actual torque data that is

read

3. Function description

Actual torque data is read by executing MC_ReadActualTorque, which is valid when Enable is TRUE. This

function block can be repeatedly executed without affecting each other.

4. Timing diagram

 Enable must be TRUE.

 When Valid=TRUE, the read torque is valid.

 When Busy is TRUE, the function block is being executed.

Timing description

Busy

Enable

Valid

Torque

1
0

1
0

1
0

t

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 204

7.1.23 MC_ReadActualVelocity

MC_ReadActualVelocity: used to read the actual speed of the drive and save it to a user-defined variable.

1. Instruction format

Instruction Name Graphical Representation ST Representation

MC_ReadActualVelocity

Actual

speed

reading

instruction

MC_ReadActualVelocity(

 Axis:=,

 Enable:=,

 Valid=>,

 Busy=>,

 Error=>,

 ErrorID=>,

 Velocity=>);

2. Associated variables

Input/output variables

Input/Outpu

t Variable
Name Data Type Valid Range

Initial

Value
Description

Axis Axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

Input variables

Input

Variable
Name Data Type Valid Range

Initial

Value
Description

Enable
Execution

condition
BOOL TRUE, FALSE FALSE

When it is set to TRUE, this

function block is started

Output variables

Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Valid
Actual torque

obtaining flag
BOOL TRUE, FALSE FALSE

It is set to TRUE when the drive

torque can be obtained

correctly

Busy
Instruction being

executed
BOOL TRUE, FALSE FALSE

It is set to TRUE when the axis

instruction is being executed

Error Error flag BOOL TRUE, FALSE FALSE
It is set to TRUE when an

exception occurs

ErrorID Error ID SMC_ERROR - 0
When an exception occurs, the

error ID is output

Velocity
Actual speed

obtaining
LREAL Speed 0 Actual speed data that is read

3. Function description

Actual speed data is read by executing MC_ReadActualVelocity, which is valid when Enable is TRUE. This

function block can be repeatedly executed without affecting each other.

4. Timing diagram

 Enable must be TRUE.

 When Valid=TRUE, the read torque is valid.

 When Busy is TRUE, the function block is being executed.

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 205

Timing description

Busy

Enable

Valid

Torque

1
0

1
0

1
0

t

7.1.24 MC_SetPosition

MC_SetPosition: used to set the position data in the instruction as the position data of an axis, without

causing any movement for setting position data. It is designed for shifting the coordinate system of an axis.

1. Instruction format

Instruction Name Graphical Representation ST Representation

MC_SetPosition

Position

change

instruction

MC_SetPosition(

 Axis:=,

 Execute:=,

 Position:=,

 Mode:=,

 Done=>,

 Busy=>,

 Error=>,

 ErrorID=>);

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Axis Axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

Input variables

Input

Variable
Name Data Type Valid Range

Initial

Value
Description

Execute
Execution

condition
BOOL TRUE, FALSE FALSE

A rising edge will start the

processing of the function block

Position
Axis position

data
LREAL - 0 Position data

Mode Setting BOOL TRUE, FALSE FALSE

Position mode

TRUE: relative position

(RELATIVE)

FALSE: absolute position

(ABSOLUTE)

Output variables

Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Done Setting BOOL TRUE, FALSE FALSE It is set to TRUE when the setting

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 206

Output

Variable
Name Data Type Valid Range

Initial

Value
Description

succeeded operation succeeds.

Busy

Instruction

being

executed

BOOL TRUE, FALSE FALSE
It is set to TRUE when the axis

instruction is being executed

Error Error flag BOOL TRUE, FALSE FALSE
It is set to TRUE when an

exception occurs

ErrorID Error ID SMC_ERROR - 0
When an exception occurs, the

error ID is output

3. Function description

Axis position parameters are set by executing MC_SetPosition, without any movement caused but with

coordinate system offset caused. This function block is triggered at the rising edge of Execute and it can be

repeatedly executed without affecting each other.

4. Timing diagram

 The function block can be triggered only at the rising edge.

 When Done is TRUE, the setting operation is successful.

 When Busy is TRUE, the function block is being executed.

Timing description

Busy

Execute

Done

1
0

1
0

1
0

t

7.1.25 MC_TouchProbe

MC_TouchProbe: used to save the axis position when a trigger event is raised.

1. Instruction format

Instruction Name Graphical Representation ST Representation

MC_

TouchProbe

External

locking

enabling

MC_TouchProbe(

 Axis:=,

 TriggerInput:=,

 Execute:=,

 WindowOnly:=,

 FirstPosition:=,

 LastPosition:=,

 Done=>,

 Busy=>,

 Error=>,

 ErrorID=>,

 RecordedPosition=>,

 CommandAborted=>);

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 207

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Axis Axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

TriggerInput
Trigger

signal
TRIGGER_REF - -

Association attributes such as

trigger signal and attributes

Input variables

Input Variable Name Data Type Valid Range
Initial

Value
Description

Execute
Execution

condition
BOOL TRUE, FALSE FALSE

A rising edge will start the

processing of the function

block

WindowOnly
Trigger

window
BOOL TRUE, FALSE FALSE -

FirstPosition
Trigger start

position
LREAL - 0

Used to specify the start

position for receiving trigger

LastPosition
Trigger end

position
LREAL - 0

Used to specify the end

position for receiving trigger

Output variables

Output Variable Name Data Type
Valid

Range

Initial

Value
Description

Done
Setting

succeeded
BOOL

TRUE,

FALSE
FALSE

It is set to TRUE when the

setting operation succeeds.

Busy

Instruction

being

executed

BOOL
TRUE,

FALSE
FALSE

It is set to TRUE when the axis

instruction is being executed

Error Error flag BOOL
TRUE,

FALSE
FALSE

It is set to TRUE when an

exception occurs

ErrorID Error ID SMC_ERROR - 0
When an exception occurs, the

error ID is output

RecordedPosition

Trigger

recording

position

LREAL - -
Position where the trigger

occurs

CommandAbort
Instruction

aborted
BOOL

TRUE,

FALSE
FALSE

It is set to TRUE when the axis

instruction is aborted

3. Function description

The actual position of the axis is recorded when TruggerInput of the MC_TouchProbe function block is

triggered. When the rising edge executes drive latching, the latching signal collected by the drive is in the

recorded position.

4. Timing diagram

 The function block can be triggered only at the rising edge.

 When Done is TRUE, the setting operation is successful.

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 208

Timing description

Execute 1
0

1
0

1
0

1
0

Done

Trigger.Signal

WindowOnly

LastPosition

FirstPosition

t

7.1.26 MC_MoveContinuousAbsolute

MC_MoveContinuousAbsolute: used to specify that an axis runs at the continuous absolute position (the unit

is axis-depended). The absolute position is specified by Distance and the running end speed is specified by

EndVelocity.

1. Instruction format

Instruction Name Graphical Representation ST Representation

MC_MoveContin

uousAbsolute

Axis

absolute

position

continuous

control

instruction

SMC_MoveContinuousAbsolute(

 Axis:=,

 Execute:=,

 Position:=,

 Velocity:=,

 EndVelocity:=,

 EndVelocityDirection:=,

 Acceleration:=,

 Deceleration:=,

 Jerk:=,

 Direction:=,

 InEndVelocity=>,

 Busy=>,

 CommandAborted=>,

 Error=>,

 ErrorID=>);

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Axis Axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 209

Input variables

Input Variable Name Data Type Valid Range
Initial

Value
Description

Execute
Execution

condition
BOOL

TRUE,

FALSE
FALSE

A rising edge trigger will

start the processing of

the function block

Distance

Relative

position of

motion

LREAL Data range 0
The data is a relative

position

Velocity
Running

speed
LREAL Data range 0

Max. speed at which the

axis runs to reach the

destination position

EndVelocity
Running end

speed
LREAL Data range 0

Running speed after

instruction execution

EndVelocity-Direction

Direction of

running at end

speed

MC_Direction

positive,

negative,

current;

Current

Options: Positive,

Negative, Current;

Not allowed: Shortest,

Fastest

Acceleration Acceleration LREAL Data range 0
Acceleration when the

speed increases

Deceleration Deceleration LREAL Data range 0
Deceleration when the

speed decreases

Direction
Running

direction
shortest Data range shortest

For linear/straight axes:

positive, negative;

For rotary/circular axes:

positive, negative,

current, shortest, fastest

Output variables

Output

Variable
Name Data Type

Valid

Range

Initial

Value
Description

InEndVelocity

Instruction

position

reaching

BOOL
TRUE,

FALSE
FALSE

It is set to TRUE after the

position in the instruction is

reached

Busy

Instruction

being

executed

BOOL
TRUE,

FALSE
FALSE

It is set to TRUE when the axis

instruction is being executed

Error Error flag BOOL
TRUE,

FALSE
FALSE

It is set to TRUE when an

exception occurs

ErrorID Error ID SMC_ERROR - 0
When an exception occurs, the

error ID is output

CommandAbort
Instruction

aborted
BOOL

TRUE,

FALSE
FALSE

It is set to TRUE when the axis

instruction is aborted

3. Function description

This function block is the axis absolute position instruction, in which Distance specifies the axis absolute

position. The axis must be in the Standstill state before the function block execution and in the

DiscreteMotion state during the execution. The axis status must be controlled throughout the complete

running process. This function block is started at the rising edge of Execute. The startup instruction can

repeatedly make the rising edge valid when the axis is in the DiscreteMotion state, which always refreshes

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 210

the position. When Acceleration or Deceleration is 0, the instruction execution is abnormal, but the axis is in

the DiscreteMotion state.

4. Timing diagram

 The function block can be executed only when the axis is in the Standstill state.

 The function block can be triggered only at the rising edge.

 When Busy is TRUE, the function block is being executed.

Timing description

Done

Execute

Position

Velocity

EndVelocity

Distance

7.1.27 MC_MoveContinuousRelative

MC_MoveContinuousRelative: used to specify that an axis runs at the continuous relative position (the unit is

axis-depended). The absolute position is specified by Distance and the running end speed is specified by

EndVelocity

1. Instruction format

Instruction Name Graphical Representation ST Representation

MC_MoveContinuo

usRelative

Axis

relative

position

continu

ous

control

instructi

on

SMC_MoveContinuousRelative

 Axis:=,

 Execute:=,

 Distance:=,

 Velocity:=,

 EndVelocity:=,

 EndVelocityDirection:=,

 Acceleration:=,

 Deceleration:=,

 Jerk:=,

 InEndVelocity=>,

 Busy=>,

 CommandAborted=>,

 Error=>,

 ErrorID=>);

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Axis Axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 211

Input variables

Input Variable Name Data Type Valid Range
Initial

Value
Description

Execute
Execution

condition
BOOL TRUE, FALSE FALSE

A rising edge will start

the processing of the

function block

Distance

Relative

position of

motion

LREAL Data range 0
The data is a relative

position

Velocity
Running

speed
LREAL Data range 0

Max. speed at which the

axis runs to reach the

destination position

EndVelocity
Running end

speed
LREAL Data range 0

Running speed after

instruction execution

EndVelocity-Direction

Direction of

running at

end speed

MC_Direction

Positive,

Negative,

Current

Current

Options: Positive,

Negative, Current

Not allowed: Shortest,

Fastest

Acceleration Acceleration LREAL Data range 0
Acceleration when the

speed increases

Deceleration Deceleration LREAL Data range 0
Deceleration when the

speed decreases

Direction
Running

direction
Shortest Data range Shortest

For linear/straight axes:

Positive, Negative

For rotary/circular axes:

Positive, Negative,

Current, Shortest,

Fastest

Output variables

Output

Variable
Name Data Type Valid Range

Initial

Value
Description

InEndVelocity

Instruction

position

reaching

BOOL TRUE, FALSE FALSE

It is set to TRUE after the

position in the instruction is

reached

Busy

Instruction

being

executed

BOOL TRUE, FALSE FALSE
It is set to TRUE when the axis

instruction is being executed

CommandAbort
Instruction

aborted
BOOL TRUE, FALSE FALSE

It is set to TRUE when the axis

instruction is aborted

Error Error flag BOOL TRUE, FALSE FALSE
It is set to TRUE when an

exception occurs

ErrorID Error ID SMC_ERROR - 0
When an exception occurs, the

error ID is output

3. Function description

The axis must be in the Standstill state before the function block execution and in the DiscreteMotion state

during the execution. Pay attention to the axis state during the execution to prevent other instructions from

interrupting the instruction execution of the axis. This function block is started at the rising edge of Execute.

The startup instruction can repeatedly make the rising edge valid when the axis is in the DiscreteMotion

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 212

state, which always refreshes the position. When Acceleration or Deceleration is 0, the instruction execution

is abnormal, but the axis is in the DiscreteMotion state.

4. Timing diagram

 The function block can be executed only when the axis is in the Standstill state.

 The function block can be triggered only at the rising edge.

 When Busy is TRUE, the function block is being executed.

Timing description

Done

Execute

Position

Velocity

EndVelocity

Distance

7.1.28 MC_Jog

MC_Jog: used to instruct an axis to jog at a specified speed.
1. Instruction format

Instruction Name Graphical Representation ST Representation

MC_Jog

Axis

jogging

instruction

MC_Jog(

 Axis:=,

 JogForward:=,

 JogBackward:=,

 Velocity:=,

 Acceleration:=,

 Deceleration:=,

 Jerk:=,

 Busy=>,

 CommandAborted=>,

 Error=>,

 ErrorId=>);

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Axis Axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

Input variables

Input Variable Name Data Type Valid Range
Initial

Value
Description

JogForward

Valid at

forward

jogging

BOOL TRUE, FALSE FALSE

If it is TRUE, the axis moves

forward. If it is FALSE, the

axis stops moving forward

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 213

Input Variable Name Data Type Valid Range
Initial

Value
Description

JogBackward

Valid at

backward

jogging

BOOL TRUE, FALSE FALSE

If it is TRUE, the axis moves

backward. If it is FALSE, the

axis stops moving backward

Velocity
Target

velocity
LREAL Positive or 0 0

Specified target speed.

Unit: [Instruction unit/s]

Acceleration Acceleration LREAL Positive or 0 0
Specified acceleration.

Unit: [Instruction unit/s]

Deceleration Deceleration LREAL Positive or 0 0
Specified deceleration.

Unit: [Instruction unit/s]

Jerk Jerk LREAL Data range 0

Slope change value of the

curve acceleration or

deceleration

Output variables

Output Variable Name Data Type Valid Range
Initial

Value
Description

Busy

Instruction

being

executed

BOOL TRUE, FALSE FALSE

It is set to TRUE when the

axis instruction is being

executed

CommandAborted
Instruction

aborted
BOOL TRUE, FALSE FALSE

It is set to TRUE when the

axis instruction is aborted

Error Error flag BOOL TRUE, FALSE FALSE
It is set to TRUE when an

exception occurs

ErrorId Error ID SMC_ERROR - 0
When an exception occurs,

the error ID is output

3. Function description

The function block is used to instruct the axis to jog at the target speed specified by Velocity. When the axis

needs to run forward, set JogForward to TRUE; when the axis needs to run backward, set JogBackward to

TRUE. When both JogForward and JogBackward are set to TRUE at the same time, the axis does not move. If

the speed value in MC_Jog exceeds the max. jogging speed in the axis parameters, the axis moves at the max.

jogging speed

4. Timing diagram

When JogForward or JogBackward is set to TRUE, the value of Busy changes to TRUE; when the falling edge

of JogForward or JogBackward starts deceleration until the axis is stopped, the value of Busy changes to

FALSE.

If another instruction is used to terminate the execution of this function block, the value of

CommandAborted changes to TRUE, and the value of Busy changes to FALSE.

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 214

Timing description

0

Speed
ACC

Target speed

DEC

Time

Aborted by another instruction,

deceleration to stop

ErrorId

Error

CommandAborted

Busy

JogBackward

JogForkward

7.1.29 MC_Inch

MC_Inch: used to cause a gradual motion on an axis, which is carried out step by step.
1. Instruction format

Instruction Name Graphical Representation ST Representation

MC_Inch

Axis

relative

positioning

instruction

SMC_Inch(

 Axis:=,

 InchForward:=,

 InchBackward:=,

 Distance:=,

 Velocity:=,

 Acceleration:=,

 Deceleration:=,

 Jerk:=,

 Busy=>,

 CommandAborted=>,

 Error=>,

 ErrorId=>);

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Axis Axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 215

Input variables

Input Variable Name Data Type Valid Range
Initial

Value
Description

InchForward
Forward

inching
BOOL TRUE, FALSE FALSE

If InchForward is TRUE, the

axis runs at the given speed

in the forward direction until

it reaches the destination.

The input must be set to

FALSE and then TRUE to

restart the running.

If InchForward is set to

FALSE before the destination

is reached, the axis

decelerates to 0 at once, and

Busy is set to FALSE. If

InchBackward is set to TRUE

in simulation mode, the axis

does not move.

InchBackward
Backward

inching
BOOL TRUE, FALSE FALSE

If InchBackward is TRUE, the

axis runs at the given speed

in the reverse direction until

it reaches the destination.

The input must be set to

FALSE and then TRUE to

restart the running.

Note: If both

InchBackward and

InchForward are set to TRUE

at the same time, the axis

does not move.

Distance
Moving

distance
LREAL Data range 0

This data is the moving

distance

Velocity
Running

speed
LREAL Data range 0

Max. speed at which the axis

runs to reach the destination

position

Acceleration Acceleration LREAL Data range 0
Acceleration when the speed

increases

Deceleration Deceleration LREAL Data range 0
Deceleration when the

speed decreases

Output variables

Output Variable Name Data Type Valid Range
Initial

Value
Description

Busy

Instruction

being

executed

BOOL TRUE, FALSE FALSE

It is set to TRUE when the

axis instruction is being

executed

CommandAborted
Instruction

aborted
BOOL TRUE, FALSE FALSE

It is set to TRUE when the

axis instruction is aborted

Error Error flag BOOL TRUE, FALSE FALSE
It is set to TRUE when an

exception occurs

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 216

Output Variable Name Data Type Valid Range
Initial

Value
Description

ErrorId Error ID SMC_ERROR - 0
When an exception occurs,

the error ID is output

3. Function description

The axis must be in the Standstill state before the function block execution and in the DiscreteMotion state

during the execution. Pay attention to the axis state during the execution to prevent other instructions from

interrupting the instruction execution of the axis. When Acceleration or Deceleration is 0, the instruction

execution is abnormal, but the axis is in the DiscreteMotion state.

4. Timing diagram

 InchForward and InchBackward must be set to TRUE or FALSE.

 When Busy is TRUE, the function block is being executed.

Timing description

Distance

Velocity

Busy

InchForword

InchBackword

7.1.30 SMC3_PersistPosition

SMC3_PersistPosition: used to persist the axis position of a multi-turn absolute encoder with real axis. (The

controller that is restarted due to power failure uses the position recorded before the power failure.) If the

servo motor uses an absolute encoder, use this function block.

1. Instruction format

Instruction Name Graphical Representation ST Representation

SMC3_PersisitPosition

Axis

positi

on

persis

ting

instru

ction

SMC3_PersistPosition(

 Axis:=,

 PersistentData:=,

 bEnable:=,

 bPositionRestored=>,

 bPositionStored=>,

 bBusy=>,

 bError=>,

 eErrorID=>,

 eRestoringDiag=>);

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 217

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type

Valid

Range

Initial

Value
Description

Axis Axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

PersistentData
Data to

persist

SMC3_PersistPosition_

Data
- -

Structure of position data

stored at power failure

Input variables

Input Variable Name Data Type Valid Range
Initial

Value
Description

Enable Enabling BOOL
TRUE,

FALSE
FALSE

TRUE indicates executing

the function block, while

FALSE indicates not

executing the function

block

Output variables

Output Variable Name Data Type Valid Range
Initial

Value
Description

bPositionRestored
Position

restored
BOOL TRUE, FALSE FALSE

TRUE indicates the position

data is restored after the

axis restart

bPositionStored
Position

stored
BOOL TRUE, FALSE FALSE

TRUE indicates the position

data is stored after the

function block is called

Busy

Instruction

being

executed

BOOL TRUE, FALSE FALSE

It is set to TRUE when the

axis instruction is being

executed

Error Error flag BOOL TRUE, FALSE FALSE
It is set to TRUE when an

exception occurs

ErrorID Error ID SMC_ERROR - 0
When an exception occurs,

the error ID is output

eRestoringDiag
Restoring

diagnosis

SMC3_Persist-P

ositionDiag
- -

Diagnosis information for

position restoring

SMC3_PPD_RESTORING_OK

: Position restored

successfully

SMC3_PPD_AXIS_PROP_CH

ANGED: Failed to restore the

position due to axis

parameter changes

SMC3_PPD_DATA_STORED_

DURING_WRITING: The

function block copies data

from the axis data structure

but not from

PersistentData. Possible

causes: Asynchronous

persistent variables, and

controller crash.

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 218

3. Function description

When the PLC is restarted and bEnable is TRUE, bPositionRestroed is TRUE.

4. Timing diagram

When Busy is TRUE, the function block is being executed.

t

t

t

t

One scan

bError

bPositionStored

bPositionRestored

bEnable

7.1.31 SMC3_PersistPositionSingleturn

SMC3_PersistPositionSingleturn: used to persist the axis position of a single-turn absolute encoder with real

axis (The controller that is restarted due to power failure uses the position recorded before the power

failure.). If the servo motor uses a single-turn absolute encoder, use this function block.

1. Instruction format

Instruction Name Graphical Representation ST Representation

SMC3_PersisitPos

itionSingleturn

Axis

position

persisting

instruction

SMC3_PersistPositionSingleturn(

 Axis:=,

 PersistentData:=,

 bEnable:=,

 usiNumberOfAbsoluteBits:=,

 bPositionRestored=>,

 bPositionStored=>,

 bBusy=>,

 bError=>,

 eErrorID=>,

 eRestoringDiag=>);

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type

Valid

Range

Initial

Value
Description

Axis Axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

PersistentData
Data to

persist

SMC3_PersistPosition_

Data
- -

Structure of position data

stored at power failure

Input variables

Input Variable Name Data Type Valid Range
Initial

Value
Description

Enable Enabling BOOL TRUE, FALSE FALSE

TRUE indicates executing the

function block, while FALSE

indicates not executing the

function block

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 219

Output variables

Output Variable Name Data Type
Valid

Range

Initial

Value
Description

bPositionRestored
Position

restored
BOOL

TRUE,

FALSE
FALSE

TRUE indicates the position

data is restored after the axis

restart

bPositionStored
Position

stored
BOOL

TRUE,

FALSE
FALSE

TRUE indicates the position

data is stored after the

function block is called

Busy

Instruction

being

executed

BOOL
TRUE,

FALSE
FALSE

It is set to TRUE when the axis

instruction is being executed

Error Error flag BOOL
TRUE,

FALSE
FALSE

It is set to TRUE when an

exception occurs

ErrorID Error ID SMC_ERROR - 0
When an exception occurs, the

error ID is output

eRestoringDiag
Restoring

diagnosis

SMC3_Persist-

PositionDiag
- -

Diagnosis information for

position restoring

SMC3_PPD_RESTORING_OK:

Position restored successfully;

SMC3_PPD_AXIS

_PROP_CHANGED: Failed to

restore the position due to axis

parameter changes; SMC3_PPD

_DATA_STORED_DURING_WRI

TING: The function block

copies data from the axis data

structure

but not from PersistentData.

Possible causes: Asynchronous

persistent variables, and

controller crash.

3. Function description

When the PLC is restarted and bEnable is TRUE, bPositionRestroed is TRUE.

4. Timing diagram

When Busy is TRUE, the function block is being executed.

t

t

t

t

One scan

bError

bPositionStored

bPositionRestored

bEnable

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 220

7.1.32 SMC3_PersistPositionLogical

SMC3_PersistPositionSingleturn: used to persist the axis position of a single-turn absolute encoder with real

axis (The controller that is restarted due to power failure uses the position recorded before the power

failure.). If the servo motor uses a single-turn absolute encoder, use this function block.

1. Instruction format

Instruction Name Graphical Representation ST Representation

SMC3_PersisitPositionLogical

Axis

position

persisting

instruction

SMC3_PersistPositionLogical(

 Axis:=,

 PersistentData:=,

 bEnable:=,

 bPositionRestored=>,

 bPositionStored=>,

 bBusy=>,

 bError=>,

 eErrorID=>,

 eRestoringDiag=>);

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type

Valid

Range

Initial

Value
Description

Axis Axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

PersistentData
Data to

persist

SMC3_Persist

Position_Data
- -

Structure of position data stored

at power failure

Input variables

Input Variable Name Data Type Valid Range
Initial

Value
Description

Enable Enabling BOOL TRUE, FALSE FALSE

TRUE indicates executing the

function block, while FALSE

indicates not executing the

function block

Output variables

Output Variable Name Data Type
Valid

Range

Initial

Value
Description

bPositionRestored
Position

restored
BOOL

TRUE,

FALSE
FALSE

TRUE indicates the position

data is restored after the axis

restart

bPositionStored
Position

stored
BOOL

TRUE,

FALSE
FALSE

TRUE indicates the position

data is stored after the

function block is called

Busy

Instruction

being

executed

BOOL
TRUE,

FALSE
FALSE

It is set to TRUE when the axis

instruction is being executed

Error Error flag BOOL
TRUE,

FALSE
FALSE

It is set to TRUE when an

exception occurs

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 221

Output Variable Name Data Type
Valid

Range

Initial

Value
Description

ErrorID Error ID SMC_ERROR - 0
When an exception occurs,

the error ID is output

eRestoringDiag
Restoring

diagnosis

SMC3_Persist-

PositionDiag
- -

Diagnosis information for

position restoring

SMC3_PPD_RESTORING_OK:

Position restored successfully

SMC3_PPD_AXIS_PROP_CHA

NGED: Failed to restore the

position due to axis

parameter changes

SMC3_PPD_DATA_STORED_D

URING_WRITING: The

function block copies data

from the axis data structure

but not from PersistentData.

Possible causes:

Asynchronous persistent

variables, and controller

crash.

3. Function description

When the PLC is restarted and bEnable is TRUE, bPositionRestroed is TRUE.

4. Timing diagram

When Busy is TRUE, the function block is being executed.

t

t

t

t

One scan

bError

bPositionStored

bPositionRestored

bEnable

7.1.33 SMC_Homing

SMC_Homing: axis home instruction, different from MC_Home. MC_Home specifies the homing mode

controlled by the servo controller, while SMC_Homing specifies the homing mode controlled by the PLC.

1. Instruction format

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 222

Instruction Name Graphical Representation ST Representation

SMC_Homing

Axis

homing

instruction

SMC_Homing(

 Axis:=,

 bExecute:=,

 fHomePosition:=,

 fVelocitySlow:=,

 fVelocityFast:=,

 fAcceleration:=,

 fDeceleration:=,

 fJerk:=,

 nDirection:=,

 bReferenceSwitch:=,

 fSignalDelay:=,

 nHomingMode:=,

 bReturnToZero:=,

 bIndexOccured:=,

 fIndexPosition:=,

 bIgnoreHWLimit:=,

 bDone=>,

 bBusy=>,

 bCommandAborted=>,

 bError=>,

 nErrorID=>,

 bStartLatchingIndex=>);

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type

Valid

Range

Initial

Value
Description

Axis Axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

Input variables

Input Variable Name Data Type
Valid

Range

Initial

Value
Description

bExecute Executing BOOL
TRUE,

FALSE
FALSE

TRUE indicates executing the

function block, while FALSE

indicates not executing the

function block

fHomePosition
Home

position
LREAL - 0

Home position after zeroing,

using the unit after user

calibration

fVelocitySlow Low speed LREAL - 0
Used to drive out of the

reference switch

fVelocityFast
High

speed
LREAL - 0

Used until the reference switch

is found

fAcceleration
Accelerati

on
LREAL - 0 Acceleration setting

fDeceleration
Decelerati

on
LREAL - 0 Deceleration setting

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 223

Input Variable Name Data Type
Valid

Range

Initial

Value
Description

fJerk Jerk LREAL - 0 Jerk setting

nDirection
Homing

direction
MC_DIRECTION -

Negativ

e
Homing start direction

bReferenceSwitch
Reference

switch
BOOL

TRUE,

FALSE
FALSE

Reference switch status. TRUE:

The reference switch is open.

FALSE: The reference switch is

closed

fSignalDelay Delay LREAL - 0

Reference switch transmission

time, used to compensate for

the deadzone time. Unit:

second.

nHomingMode
Homing

mode

SMC_HOMING_

MODE

FAST_BSLO

W_S_STOP,

FAST_BSLO

W_STOP_S,

FAST_BSLO

W_I_S_STO

P,

FAST_SLOW

_S_STOP,

FAST_SLOW

_STOP_S,

FAST_SLOW

_I_S_STOP

0 Homing mode

bReturnTozero
Returning

to zero
BOOL

TRUE,

FALSE
FALSE

TRUE: The axis moves to zero

after homing (Note: If

fHomePosition=10, the axis

position is 10 after homing,

and when bReturnTozero is

TRUE, the axis reversely moves

by 10 units to zero.)

bIndexOccured
Pulse

signal
BOOL

TRUE,

FALSE
FALSE

TRUE: Index pulse is detected.

It is valid at the homing modes

FAST_BSLOW_I_S_STOP and

FAST_SLOW_I_S_STOP

fIndexPosition
Index

position
LREAL - 0

Position where the index

occurs

bIgnoreHWLimit

Ignoring

hardware

position

limit

BOOL
TRUE,

FALSE
FALSE

TRUE: The hardware position

limit switch is disabled. If the

same physical switch is used

as both the hardware position

limit switch and the reference

switch, hardware control is set

to FALSE.

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 224

Output variables

Output Variable Name Data Type Valid Range
Initial

Value
Description

bDone
Setting

succeeded
BOOL TRUE, FALSE FALSE TRUE, homing completed

bBusy

Instruction

being

executed

BOOL TRUE, FALSE FALSE
TRUE, the function block

is being executed

bCommandAborted
Instruction

aborted
BOOL TRUE, FALSE FALSE

TRUE, the function block

is aborted by other action

instructions

bError Error flag BOOL TRUE, FALSE FALSE
It is set to TRUE when an

exception occurs

nErrorID Error ID SMC_ERROR - 0

When an exception

occurs, the error ID is

output

bStartLatchingIndex

Start

latching

iIndex

BOOL TRUE, FALSE FALSE

Generated by

“bIndexOccured” and

“fIndexPosition”

The homing modes are described as follows:

Mode Type
Initial

Value
Description

FAST_BSLOW_S_STOP SMC_HOMING_MODE 0

The axis follows the set direction to the

home switch at a high speed, and leaves the

home switch at a low speed in the reverse

direction after touching the home switch.

After leaving, the controller executes

MC_setPosition to set the present position

to the setting of fHomePosition, and then

executes MC_stop

FAST_BSLOW_STOP_S SMC_HOMING_MOD 1

The axis follows the set direction to the

home switch at a high speed, and leaves the

home switch at a low speed in the reverse

direction after touching the home switch.

After leaving, the controller executes

MC_stop to stop the axis, and then executes

MC_setPosition to set the present position

to the setting of fHomePosition

FAST_BSLOW_I_S_STOP SMC_HOMING_MOD 2

The axis follows the set direction to the

home switch at a high speed, and leaves the

home switch at a low speed in the reverse

direction after touching the home switch.

When receiving the bIndexOccured signal,

the controller executes MC_setPosition and

then MC_stop

FAST_SLOW_S_STOP SMC_HOMING_MOD 4

The axis follows the set direction to the

home switch at a high speed, and leaves the

home switch at a low speed after touching

the home switch. After leaving, the

controller executes MC_setPosition to set

the present position to the setting of

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 225

Mode Type
Initial

Value
Description

fHomePosition, and then executes MC_stop

FAST_SLOW_STOP_S
FAST_SLOW_STOP_S

SMC_HOMING_MOD
5

The axis follows the set direction to the

home switch at a high speed, and leaves the

home switch at a low speed after touching

the home switch. After leaving, the

controller executes MC_stop to stop the

axis, and then executes MC_setPosition to

set the present position to the setting of

fHomePosition

FAST_SLOW_I_S_STOP SMC_HOMING_MOD 6

The axis follows the set direction to the

home switch at a high speed, and leaves the

home switch at a low speed in the reverse

direction after touching the home switch.

When receiving the bIndexOccured signal,

the controller executes MC_setPosition and

then MC_stop

3. Function description

After SMC_HOMING is started at the rising edge of bExecute, the axis moves at the speed specified by

fVelocityFast in the direction specified by nDirection, which does not end until bReferenceSwitch=FALSE.

The axis slowly stops and leaves the reference switch at the speed specified by fVelocitySlow in the reverse

direction. When bReferenceSwitch=TRUE, homing is completed

After the homing instruction is enabled, the status change sequence of bReferenceSwitch is ON→OFF→ON,

the homing is completed at the rising edge of OFF→ON, and the reference position is set. Reference position

= fHomePostion + [(fSignalDelay*1000 + 1 DC cycle)/1000] * fVelocitySlow, which actually compensates for

the bReferenceSwitch sampling delay and one-communication-cycle displacement delay.

If bReturnToZero=TRUE, the reference position is set to {fHomePostion + [(fSignalDelay*1000 + 1 DC

cycle)/1000] * fVelocitySlow} at the rising edge of OFF→ON of bReferenceSwitch, the axis moves to zero at

the speed specified by fVelocityFast.

Note: After the Done signal is completed, the axis position is set to fHomePosition. The setting time is

related to nHomingMode.

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 226

4. Timing diagram

 The instruction is executed When bReferenceSwitch=TRUE:

t

t

t

t

tbExecute

bReferenceSwitch

bBusy

bDone

Velocity

fVelocity

Fast

-fVelocitySlow

 The instruction is executed When bReferenceSwitch=FALSE:

t

t

t

t

tbExecute

bReferenceSwitch

bBusy

bDone

Velocity

-fVelocitySlow

7.1.34 SMC_SetControllerMode

SMC_SetControllerMode: used to set the current running mode of the servo, which is cyclic synchronous

position control by default. For the control mode-related settings, refer to the servo manual. For DA200, the

position mode is 8, the speed mode is 9, and the torque mode is 10.

1. Instruction format

Instruction Name Graphical Representation ST Representation

SMC_SetControllerMode

Axis

control

mode

setting

instruction

SMC_SetControllerMode(

 Axis:=,

 bExecute:=,

 nControllerMode:=,

 bDone=>,

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 227

Instruction Name Graphical Representation ST Representation

 bBusy=>,

 bError=>,

 nErrorID=>);

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type

Valid

Range

Initial

Value
Description

Axis Axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

Input variables

Input Variable Name Data Type
Valid

Range
Initial Value Description

bExecute Executing BOOL
TRUE,

FALSE
FALSE

TRUE indicates

executing the function

block, while FALSE

indicates not

executing the function

block

nControllerMode
Control

mode
SMC_Controller_MODE - SMC_Position

Axis control mode

1: Torque control

mode, SMC_torque

2: Speed control

mode, SMC_Velocity

3: Position control

mode, SMC_Position

4: Current control

mode, SMC_Current

Output variables

Output

Variable
Name Data Type Valid Range

Initial

Value
Description

bDone
Setting

succeeded
BOOL TRUE, FALSE FALSE TRUE, homing completed

bBusy

Instruction

being

executed

BOOL TRUE, FALSE FALSE
TRUE, the function block

is being executed

bError Error flag BOOL TRUE, FALSE FALSE
It is set to TRUE when an

exception occurs

nErrorID Error ID SMC_ERROR - 0

When an exception

occurs, the error ID is

output

Preconditions for using this function block:

1. The axis must meet these control conditions, for example, the virtual axis cannot use this function block.

2. The synchronization cycle supported by each mode must be consistent.

3. The axis must NOT be in the state "errorstop", "stopping", or "homing” when this instruction is executed;

otherwise, an error will be reported.

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 228

4. If the axis still does not change to the set control mode after the instruction executes 1000 task cycles, the

instruction reports an error and bError changes from FALSE to TRUE.

5. When switching from a low level to a high level control mode (torque→velocity, torque→position,

velocity→position), the function block calculates the set value of the high level signal. For example, when

switching from torque mode to position mode, the function block superimposes an expected position

distance (calculated by the current actual speed and the time offset in the task cycle) based on the current

actual position of the axis to compensate for the time lag between the actual and set values.

6. After the instruction is executed, when the actual control mode of the axis is changed to the set control

mode, the bDone signal is triggered. The axis will still run during the time between the instruction triggering

and the bDone signal triggering, and during this time, the function block will calculate the appropriate set

value according to the set control mode. However, if the bDone signal is triggered but there is no other

control instruction to continue to set the value for the axis, the axis will stop immediately and report an

error. Therefore, the rising edge of the bDone signal is required to trigger MC_Halt, MC_MoveVelocity,

MC_MoveAbsolute, and other instructions to smoothly control the axis.

Note: When the control mode is switched to torque control, a torque control instruction (such as

SMC_SetTorque) is required to smoothly control the axis.

7.1.35 SMC_SetTorque

SMC_SetTorque: used to set the torque of an axis (valid in torque control mode).

1. Instruction format

Instruction Name Graphical Representation ST Representation

SMC_SetTorque

Torque

setting

instruction

SMC_SetTorque(

 Axis:=,

 bEnable:=,

 fTorque:=,

 bBusy=>,

 bError=>,

 nErrorID=>);

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type

Valid

Range

Initial

Value
Description

Axis Axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

Input variables

Input Variable Name Data Type
Valid

Range

Initial

Value
Description

bEnable Enabling BOOL
TRUE,

FALSE
FALSE

TRUE indicates executing the

function block, while FALSE

indicates not executing the

function block

fTorque Set torque LREAL - 0
The unit is 0.1%

(Axis.fFactorTor:=1;)

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 229

Output variables

Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Busy

Instruction

being

executed

BOOL TRUE, FALSE FALSE
TRUE, the function block

is being executed

bError Error flag BOOL TRUE, FALSE FALSE
It is set to TRUE when an

exception occurs

nErrorID Error ID SMC_ERROR - 0

When an exception

occurs, the error ID is

output

3. Function description

This function block is started at the rising edge of bEnable. If there is no error, bBusy is TURE. This

instruction is only used to set the torque value of an axis and is not for torque control. The axis control mode

is valid in the torque control mode.

The torque setting instruction can only be run in the synchronous torque mode. When enabling this

instruction, you must first use MC_SetControlMode to switch the control mode to

the synchronous torque mode.

The actual torque of the drive is limited by the maximum positive/negative torque set in the configuration

parameters.

To stop the execution of this instruction, you can use the MC_Stop (forced stop) instruction. After stopping,

the drive switches to the synchronous position mode.

4. Error description

If the axis reports an error, Error outputs TRUE; if the axis input is valid, Error outputs TRUE.

If an axis control mode error is reported, Error is TRUE, and the error code is

SMC_ST_WRONG_CONTROLLER_MODE.

7.2 Master-slave Axis Instructions

7.2.1 MC_CamIn

MC_CamIn: used to designate a cam table to start the execution of the e-cam actions, and specify the offset

value, scaling ratio and working mode of the master and slave axes according to application requirements.
1. Instruction format

Instruction Name Graphical Representation ST Representation

MC_Camin

Cam

action

start

instruction

MC_CamIn(

 Master:=,

 Slave:=,

 Execute:=,

 MasterOffset:=,

 SlaveOffset:=,

 MasterScaling:=,

 SlaveScaling:=,

 StartMode:=,

 CamTableID:=,

 VelocityDiff:=,

 Acceleration:=,

 Deceleration:=,

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 230

Instruction Name Graphical Representation ST Representation

 Jerk:=,

 TappetHysteresis:=,

 InSync=>,

 Busy=>,

 CommandAborted=>,

 Error=>,

 ErrorID=>,

 EndOfProfile=>,

 Tappets=>);

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Master Master axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

Slave Slave axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

Note: The master axis and the slave axis must be different axes. Otherwise, errors may be reported.

Input variables

Input Variable Name Data Type Valid Range
Initial

Value
Description

Execute
Cam function

entry
BOOL

TRUE,

FALSE
FALSE

The rising edge starts the

execution of the function

block

MasterOffset
Master axis

offset
LREAL

Negative,

Positive, or

0

0

The phase of the master

axis is moved by the

specified offset value

SlaveOffset
Slave axis

offset
LREAL

Negative,

Positive, or

0

0

The phase of the slave axis

is moved by the specified

offset value

MasterScaling

Pre-compiling

scaling factor

of the master

axis

LREAL >0.0 1

The phase of the master

axis is scaled up or down

by the specified value

SlaveScaling

Pre-compiling

scaling factor

of the slave

axis

LREAL >0.0 1

The phase of the slave axis

is scaled up or down by the

specified value

StartMode

Output mode

of the slave

axis in relative

to cam

MC_StartMode - absolute

0: Absolute position

1: Relative position

2: ramp_in (ramp

switching in)

3: ramp_in_pos (forward

ramp switching in)

4: ramp_in_neg (reverse

ramp switching in)

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 231

Input Variable Name Data Type Valid Range
Initial

Value
Description

CamTableID Table ID MC_CAM_ID - -

Used to define a cam table,

in conjunction with output

points of

MC_CamTableSelect

VelocityDiff Speed LREAL - -
Max. speed, different from

ramp_in

Acceleration Acceleration LREAL - - Acceleration for ramp_in

Deceleration Deceleration LREAL - - Deceleration for ramp_in

Jerk Jerk LREAL - - Jerk for ramp_in

TappetHysteresis
Tappet

damping
LREAL - -

Damping factor of the

tappet

Output variables

Output Variable Name Data Type Valid Range
Initial

Value
Description

InSync
Cam taking

effect
BOOL

TRUE,

FALSE
FALSE

After the master axis and the

slave axis establish a cam

relationship, InSync is set.

When the execution condition

of the instruction is OFF,

InSync is reset.

Busy
Synchrono

us running
BOOL

TRUE,

FALSE
FALSE

When the rising edge of

Execute is detected, it is set to

TRUE, which indicates that the

cam relationship is being

coupled and you need to use

Cam_out for reset. The

instruction execution

condition reset cannot reset

the status.

CommandAborted
Instruction

aborted
BOOL

TRUE,

FALSE
FALSE

It is set to TRUE when the slave

axis is aborted by another

control instruction

Error Error flag BOOL
TRUE,

FALSE
FALSE

Error is set when an error is

detected. Error is reset when

the instruction execution

condition is OFF

ErrorID Error ID SMC_ERROR - 0
When an exception occurs, the

error ID is output

EndOfProfile
Profile

completed
BOOL

TRUE,

FALSE
FALSE

If Periodic is 0 (acyclic) when

MC_CamTableSelect is

executed, EndOfProfile is set

after the cam profile is

completed for one time, and

EndOfProfile is reset when the

instruction execution

condition is OFF.

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 232

Output Variable Name Data Type Valid Range
Initial

Value
Description

Tappets
Tappet

table

SMC_TappetD

ata
- -

Associated cam tappet, which

can be read by

MC_GetTappetValue

3. Function description

Under the condition that correct cam tables are selected and axes do not encounter errors, the rising edge

of Execute triggers the function block. In a cam motion system, to call a cam profile, call the

MC_CamTableSelect instruction to select the corresponding cam table, and then execute MC_CamIn; to

change the cam profile, call the MC_CamTableSelect instruction to reselect a cam table. You need to use the

Camout instruction to decouple the cam relationship between the master axis and slave axis. When the

instruction is being executed, if another instruction is applied to the slave axis at this time, the cam

relationship between the master axis and slave axis is decoupled, and Command-Aborted outputs TRUE.

4. Timing diagram

Cyclic mode (MC_CamTableSelect.Periodic is TRUE):

Note: The MC_Camout instruction only decouples the cam relationship between the master axis and slave

axis. If the slave axis speed is not 0 during the decoupling, the slave axis does not automatically decelerate

to 0, which indicates using MC_STOP is required.

Execute

Busy

Master axis

relative

mode

Insync

EndOfProfile

CommandAborted

MC_CamOut.Done

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 233

Non-cyclic mode (MC_CamTableSelect.Periodic is FALSE):

Insync

EndOfProfile

CommandAborted

CamOut

5. Function block description

The instruction can be started in any state during master axis stop, position control, speed control, and

synchronization control.

The calculation method of the engaging points in the cam profile is as follows:

＋

CAM curve
＋

Master

offset
Slave

Scaling

Master

position

Master

Scaling

Slave

position

The following formula is obtained according to the figure:

Position_Slave = SlaveScaling*CAM(MasterScaling*MasterPosition + MasterOffset) + SlaveOffset

The positions of the master and slave axes in the formula do not represent the actual physical axis positions,

but the positions of the master and slave axes related to the cam function curve.

The relationship between the master/slave axis positions and the master/slave real axis position is

described in detail.

Note: The positions of the master and slave axes refer to the positions of the master and slave axes

required by the cam function curve, but not the physical real axis positions of the master and slave axes.

Relationship between the cyclic mode and EndOfProfile: Whether the cyclic or non-cyclic mode determines

whether the e-cam needs to be performed again after the master axis reaches the end position.

In non-cyclic mode: Periodic is FALSE in the MC_CamTableSelect instruction. When the cam is completed,

EndofProfile outputs TRUE; when Execute inputs FALSE, EndofProfile outputs FALSE. At this time, the cam

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 234

only runs one master axis cycle.

Note: The master axis cycle indicates the range from the start position to the end position of the master

axis of the e-cam.

In cyclic mode: Periodic is TRUE in the MC_CamTableSelect instruction.

At this time, after completing one master axis cycle, the cam starts the next cycle, and the TRUE output of

the EndofProfile signal only maintains one task cycle.

Note: When the cam master-axis position is greater than or equal to the cam end position, the

EndofProfile signal outputs TRUE, and the cam master-axis position is updated to (Cam start position +

Actual position - End position).

For example: The start position and end position of the cam master axis are 0 and 360, the master-slave axis

scaling is set to 1, the master-slave axis offset value is set to 0, the task cycle is 2 ms, and the master axis

speed is 100. When the cam master-axis position in a certain task cycle is 359.99, the output of EndofProfile

in the next cycle is TRUE and the master axis position becomes 359.99+100*0.002-360=0.19.

The start position and end position of the cam profile designed in cyclic mode need to maintain a smooth

transition; otherwise, jumping may be caused. For example, if the start speed is 0 and the end speed is not 0,

jumping is caused when the master axis transits from the end of the cycle and the beginning of the new

cycle.

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 235

The master/slave axis absolute/relative mode relationship in StartMode and MC_CamTableSlect is as

follows:

Absolute mode: At the beginning of a new e-cam cycle, the calculation of the e-cam has no relationship

with the present slave axis position. If the start position of the slave axis relative to the master axis is

different from the end position of the slave axis relative to the master axis, jumping is caused.

Relative mode: The new e-cam cycle changes according to the present position of the slave axis; that is, the

position of the slave axis at the end of the previous e-cam cycle is considered as "slave axis offset" in the

present e-cam movement, therefore added. However, if the position of the slave axis corresponding to the

start position of the master axis is not 0 in the e-cam definition, jumping is caused.

Ramp input: Potential jumping at the beginning of the e-cam is prevented by adding a compensation

movement (The movement is based on VelocityDiff, acceleration, and deceleration. Therefore, as long as the

slave axis is rotating, the forward ramp input can only use forward compensation, and the reverse ramp

input can only use reverse compensation. For the slave axis in linear motion, the compensation direction

can be realized automatically, that is, the forward ramp input and the reverse ramp input can be interpreted

by the ramp input.

The relationship table is as follows:

MC_CamTableSelect.MasterAbsolute Master Axis Mode

absolute Absolute mode

relative Relative mode

MC_CamIn.StartMode MC_CamTableSelect.SlaveAbsolute Slave Axis Mode

absolute TRUE Absolute mode

absolute FALSE Relative mode

relative TRUE Relative mode

relative FALSE Relative mode

ramp_in TRUE Absolute mode of ramp switching in

ramp_in FALSE Relative mode of ramp switching in

ramp_in_pos TRUE
Absolute mode of forward ramp

switching in

ramp_in_pos FALSE
Relative mode of forward ramp

switching in

ramp_in_neg TRUE
Absolute mode of reverse ramp

switching in

ramp_in_neg FALSE
Relative mode of reverse ramp

switching in

The relationship is described as follows:

Cam master-axis range: 0–360; cam slave-axis range: 0–180; cyclic mode; master/slave axis offset value: 0;

master/slave axis scaling ratio: 1. The designed cam table is shown in the following figure.

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 236

StartMode=0 (Absolute mode)

In MC_CamTableSlect, when MasterAbsolute is set to FALSE and SlaveAbsolute is set to TRUE, the master

axis is working in relative mode and the slave axis is working in absolute mode. When the rising edge of

Execute starts the cam, the master axis of the cam starts from the "start position" (0) in the cam table, and

the cam slave axis is calculated and output according to the above-mentioned "cam table engaging

formula". The real axis instruction position of the slave axis is equal to the output value of the engaging

calculation. For example, if the start position of the cam slave axis is 0, and the real axis position of the slave

axis is 20 when the cam is started, the real axis position instruction of the slave axis is 0 at the start, which

causes jumping.

Note: In this case, jumping occurs when the slave axis (real axis) start position is not the slave axis start

position of the cam.

In MC_CamTableSlect, when MasterAbsolute is set to FALSE and SlaveAbsolute is set to FALSE, the master

axis is working in relative mode and the slave axis is working in relative mode. When the rising edge of

Execute starts the cam, the master axis of the cam starts from the "start position" (0) in the cam table, the

cam slave axis is calculated and output according to the above-mentioned "cam table engaging formula".

The real axis instruction position of the slave axis is equal to [Output value of engaging calculation, or cam

slave-axis position) + (Real axis position of the slave axis at startup)].

For example, when the cam is started, if the real axis position of the slave axis is 20, and the slave axis start

position in the cam table is 0, then the real axis instruction position of the slave axis is 20 when the cam is

started, the position in the following is 20 plus the calculated value of the cam table, and the highest value is

20 plus the max. calculated value (180) of the cam table, that is, 200.

7.2.2 MC_Camout

MC_Camout: used to decouple the cam relationship of the slave axis.

Note: After executing this instruction, the slave axis continues to run at the speed used before the

decoupling. Therefore, this instruction needs to be used in conjunction with instructions such as MC_Stop.
1. Instruction format

Instruction Name Graphical Representation
ST

Representation

MC_Camout

Cam

decoupling

instruction

MC_CamOut(

 Slave:=,

 Execute:=,

 Done=>,

 Busy=>,

 Error=>,

 ErrorID=>);

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 237

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type

Valid

Range
Initial Value Description

Slave
Slave

axis
AXIS_REF - -

Reference to axis, that is, an

instance of AXIS_REF_SM3

Input variables

Input

Variable
Name

Data

Type
Valid Range

Initial

Value
Description

Execute Cam function exit BOOL
TRUE,

FALSE
FALSE

The rising edge starts the

execution of the function block

Output variables

Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Done Completed BOOL TRUE, FALSE FALSE
The cam relationship with the

master slave has been decoupled

Busy
Synchronous

running
BOOL TRUE, FALSE FALSE The instruction is being executed

Error Error flag BOOL TRUE, FALSE FALSE
Error is set when an error is

detected.

ErrorID Error ID SMC_ERROR - 0
When an exception occurs, the

error ID is output

3. Function description

The instruction is used to decouple the cam relationship of the slave axis. At the rising edge, the cam

relationship of the slave axis is decoupled. After the decoupling, the salve axis may or may not stop. If the

slave axis speed is not 0 before the instruction is executed, the cam relationship is decoupled after the DONE

signal is completed, but the slave axis still runs at the speed before the relationship is decoupled. If the slave

axis does not have a cam coupling relationship, ERROR is output.

4. Timing diagram

Master axis

position

Slave axis

position

Synchronous

running

Deceleration

stopDisconnect

cam

coupling

Execute

Busy

Done

Error

MC_Stop.done

MC_Stop.Excute

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 238

7.2.3 MC_CamTableSelect

MC_CamTableSelect: used to select a cam table in conjunction with MC_CamIn.
1. Instruction format

Instruction Name Graphical Representation ST Representation

MC_CamTableSelect

Cam table

selection

instruction

MC_CamTableSelect(

 Master:=,

 Slave:=,

 CamTable:=,

 Execute:=,

 Periodic:=,

 MasterAbsolute:=,

 SlaveAbsolute:=,

 Done=>,

 Busy=>,

 Error=>,

 ErrorID=>,

 CamTableID=>);

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Master
Master

axis
AXIS_REF - -

Reference to axis, that is, an

instance of AXIS_REF_SM3

Slave
Slave

axis
AXIS_REF - -

Reference to axis, that is, an

instance of AXIS_REF_SM3

CamTable
Table

selection
MC_CAM_REF - -

Reference to cam table

description, that is, an instance

of MC_CAM_REF

Note: The master axis and the slave axis must be different axes. Otherwise, errors may be reported. The

cam table specified by CamTable must be correct; otherwise, errors may be reported. The master and slave

axes may be real or virtual axes.

Input variables

Input Variable Name Data Type Valid Range
Initial

Value
Description

Execute Executing BOOL TRUE, FALSE FALSE
The rising edge starts the

execution of the function block

Periodic
Repeated

mode
BOOL TRUE, FALSE FALSE

Used to specify whether the

cam table is executed only once

or repeatedly:

TRUE: Repeatedly

FALSE: Not repeatedly

MasterAbsolute

Master axis

absolute

mode

BOOL TRUE, FALSE FALSE

Used to specify whether the

coordinate system of master

axis tracking uses an absolute

or relative position:

1: Absolute position

0: Relative position

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 239

Input Variable Name Data Type Valid Range
Initial

Value
Description

SlaveAbsolute

Slave axis

absolute

mode

BOOL TRUE, FALSE FALSE

Used with StartMode in

MC_CamIn to specify whether

the present instruction position

of the slave axis is the absolute

(cam table output value

corresponding to the current

master axis position) or relative

(slave axis position at the start

of the cam table output value

superposition instruction)

position output of the cam

table:

1: Absolute position; 0: Relative

position

Output variables

Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Done Completed BOOL TRUE, FALSE FALSE
The cam relationship with the

master slave has been decoupled

Busy
Synchronou

s running
BOOL TRUE, FALSE FALSE The instruction is being executed

Error Error flag BOOL TRUE, FALSE FALSE
Error is set when an error is

detected.

ErrorID Error ID SMC_ERROR - 0
When an exception occurs, the

error ID is output

CamTableID
Effective

cam ID
MC_CAM_ID - -

Used to select the effective cam

ID, which is used together with

CamTableID in MC_CamIn

3. Function description

The instruction specifies the cam table required for e-cam running. Therefore, before using this instruction,

you must edit the cam table (with a cam editor or online). The specified cam table can be executed at the

rising edge of Execute or refreshed after cam table update. When the Done signal is TRUE, the variable

“CamTableID” is output and takes effect. During instruction execution, Busy is TRUE; when Done is TRUE,

Busy is FALSE. For details about MasterAbsolute, SlaveAbsolute, and Periodic, see MC_CamIn.

7.2.4 MC_GearIn

MC_GearIn: used to set the gear ratio between the slave axis and the master axis to perform electronic

gearing.

1. Instruction format

Instruction Name Graphical Representation ST Representation

MC_GearIn

E-gear

function

block

MC_GearIn(

 Master:=,

 Slave:=,

 Execute:=,

 RatioNumerator:=,

 RatioDenominator:=,

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 240

Instruction Name Graphical Representation ST Representation

 Acceleration:=,

 Deceleration:=,

 Jerk:=,

 InGear=>,

 Busy=>,

 CommandAborted=>,

 Error=>,

 ErrorID=>);

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Master Master axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

Slave Slave axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

Input variables

Input Variable Name Data Type Valid Range
Initial

Value
Description

Execute Executing BOOL TRUE, FALSE FALSE
The function block is

triggered at the rising edge

RatioNumerator
Numerator of

gear ratio
DINT

Positive,

negative
1 Numerator of gear ratio

RatioDenominator
Denominator

of gear ratio
UDINT

Positive

number
1 Denominator of gear ratio

Acceleration Acceleration LREAL Positive or 0 - Specified acceleration

Deceleration Deceleration LREAL Positive or 0 - Specified deceleration

Jerk Jerk LREAL Positive or 0 - Jerk

Output variables

Output Variable Name Data Type Valid Range
Initial

Value
Description

InGear
Gear ratio

reached
BOOL TRUE, FALSE FALSE

It is set to TRUE when the

slave axis reaches the target

speed

Busy
Synchronous

running
BOOL TRUE, FALSE FALSE

The instruction is being

executed

CommandAborted Interruption BOOL TRUE, FALSE FALSE

It is set to TRUE when the

instruction is aborted by

another control instruction

Error Error flag BOOL TRUE, FALSE FALSE
Error is set when an error is

detected.

ErrorID Error ID
SMC_ERRO

R
- 0

When an exception occurs,

the error ID is output

3. Function description

The e-gear action is started at the rising edge of Execute. To achieve decoupling after executing the e-gear,

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 241

the GearOut instruction must be used. This instruction is a speed e-gear function, and the synchronization

distance loss caused during acceleration will not be automatically compensated. When the Busy signal is

TRUE during instruction execution, if the slave axis target speed is not reached, the new rising edge of

Execute will not affect it. When the Busy signal is TRUE during instruction execution, if the slave axis target

speed is reached, the new rising edge of Execute will not affect it. When the target speed is reached, InGear

is TRUE, and then: Slave axis movement amount = Master axis movement amount *

RatioNumerator/RatioDenominator. If the master axis speed changes in real time, exercise caution before

using this instruction.

Note: Do not use the MC_SetPosition instruction during instruction execution to avoid accidents caused

by the rapid motor running.

4. Timing diagram

16#00ErrorId

Error
t

GearOut

Slave_Velocity

CommandAborted

InGear

Busy

Execute

The timing diagram of the restart after a gear ratio parameter change is as follows:

t

Execute

InGear

Busy

Slave_Velocity

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 242

7.2.5 MC_GearOut

MC_GearOut: used to terminate the MC_GearIn and MC_GearInPos instructions that are being executed.

1. Instruction format

Instruction Name Graphical Representation ST Representation

MC_GearOut

E-gear

decoupling

instruction

MC_GearOut(

 Slave:=,

 Execute:=,

 Done=>,

 Busy=>,

 Error=>,

 ErrorID=>);

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Slave Slave axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

Input variables

Input

Variable
Name Data Type Valid Range

Initial

Value
Description

Execute Executing BOOL TRUE, FALSE FALSE
The function block is triggered at

the rising edge

Output variables

Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Done Completed BOOL TRUE, FALSE FALSE

It is TRUE when the e-gear

relationship between the slave

axis and the master axis is

decoupled

Busy
Synchrono

us running
BOOL TRUE, FALSE FALSE The instruction is being executed

Error Error flag BOOL TRUE, FALSE FALSE
Error is set when an error is

detected.

ErrorID Error ID SMC_ERROR - 0
When an exception occurs, the

error ID is output

3. Function description

The e-gear decoupling action is started at the rising edge of Execute. If Execute is TRUE and ERROR is FALSE,

Busy is TRUE and Done is TRUE.

After the e-gear decoupling action is completed, the slave axis speed used before decoupling is used.

Therefore, the slave axis is stopped in conjunction with the MC_Stop instruction. At the falling edge of

Execute, Done is FALSE.

4. Timing diagram

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 243

16#00
t

ErrorId

Error

Done

Busy

Execute

Slave_Velocity

7.2.6 MC_GearInPos

MC_GearInPos: used to set the e-gear ratio between the slave axis and the master axis to perform electronic

gearing. It specifies the master axis position, slave axis position, and master axis distance from the

synchronization start to switch into e-gear actions.

1. Instruction format

Instruction Name Graphical Representation ST Representation

MC_GearInPos

E-gear

coupling

switching-in

position

MC_GearInPos(

 Master:=,

 Slave:=,

 Execute:=,

 RatioNumerator:=,

 RatioDenominator:=,

 MasterSyncPosition:=,

 SlaveSyncPosition:=,

 MasterStartDistance:=,

 AvoidReversal:=,

 StartSync=>,

 InSync=>,

 Busy=>,

 CommandAborted=>,

 Error=>,

 ErrorID=>);

2. Associated variables

Input/output variables

Input/Output

Variable
Name

Data

Type

Valid

Range
Initial Value Description

Master
Master

axis
AXIS_REF - -

Reference to axis, that is, an instance of

AXIS_REF_SM3

Slave
Slave

axis
AXIS_REF - -

Reference to axis, that is, an instance of

AXIS_REF_SM3

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 244

Input variables

Input Variable Name
Data

Type
Valid Range

Initial

Value
Description

Execute Executing BOOL TRUE, FALSE FALSE
The function block is triggered at

the rising edge

RatioNumerator

Numerator

of gear

ratio

DINT TRUE, FALSE -
Numerator of the master/slave

speed ratio

RatioDenominator

Denominat

or of gear

ratio

DINT - -
Denominator of the master/slave

speed ratio

MasterSync

Position

Master axis

synchroniz

ation

position

LREAL - -

Master axis position when the

master/slave axis gear ratios are

coupled

SlaveSyncPosition

Slave axis

synchroniz

ation

position

LREAL - -

Slave axis position when the

master/slave axis gear ratios are

coupled

MasterStartDistance

Master axis

position of

synchroniz

ation

execution

LREAL - -

According to this position value,

-MasterSyncPosition, and the

SlaveSyncPosition value, a smooth

curve is calculated to make the

slave axis gear synchronized with

the master axis gear when the

slave axis is at SlaveSyncPosition.

The master axis range of the curve

is [MasterStartDistance,

MasterSyncPosition]

AvoidReversal

Disabling

reverse

running

BOOL TRUE, FALSE FALSE

It is set to FALSE if the physical

position of the slave axis leads. It is

set to TRUE if the slave axis cannot

implement reverse running

physically or the reverse running

may cause danger. It is applicable

only to modal axes. If reverse

running cannot be avoided, the

axis will stop due to exceptions.

Output variables

Output Variable Name Data Type
Valid

Range

Initial

Value
Description

StartSync
Coupling

start
BOOL

TRUE,

FALSE
FALSE

TRUE: The e-gear coupling is

started

InSync Coupling BOOL
TRUE,

FALSE
FALSE

TRUE: The e-gear coupling is

completed, and the master/slave

axis gear ratios are being coupled

Busy
Synchronous

running
BOOL

TRUE,

FALSE
FALSE The instruction is being executed

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 245

Output Variable Name Data Type
Valid

Range

Initial

Value
Description

CommandAborted
Instruction

aborted
BOOL

TRUE,

FALSE
FALSE

Aborted by another control

instruction

Error Error flag BOOL
TRUE,

FALSE
FALSE

Error is set when an error is

detected.

ErrorID Error ID SMC_ERROR - 0
When an exception occurs, the

error ID is output

3. Function description

The instruction is started at the rising edge of Execute.

After the action starts, the slave axis accelerates or decelerates at the target speed that is the master axis

speed multiplied by the gear ratio.

The essential of the process from the synchronization start to the end is an e-cam where the slave axis

follows the master axis in the synchronization interval. At this time, the instruction automatically designs a

cam profile according to the master axis range (MasterSyncPosition-MasterStartDistance,

MasterSyncPosition), the slave axis range (current position, SlaveSyncPosition), and the gear ratios. When

synchronization is performed, the slave axis follows the master axis to complete the cam action.

Note: If the master and slave axes work in linear mode, you need to ensure that the above-mentioned

parameters are set properly; otherwise, the gear action cannot be performed correctly. Therefore, it is

recommended that the master and slave axes work in cyclic mode when this instruction is used

For example: Both the master and slave axes move forward in linear mode. If the master axis position >

MasterSyncPosition-MasterStartDistance, or the slave axis position > SlaveSyncPosition, when the

instruction is executed, the e-gear movement cannot be switched in.

The timing diagram instances with different parameters are provided:

When both the master axis and the slave axis work in cyclic mode (360 cycles):

 MasterSyncPosition=280, MasterStartDistance=50, SlaveSyncPosition=60, Master axis speed=50,

AvoidReversal=FALSE.

16#00 tErrorId

Error

Slave axis

speed

100

Slave axis

position

60

Master axis

position

100

50 230

280

InSync

StartSync

Execute

＋

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 246

 MasterSyncPosition=300, MasterStartDistance=370, SlaveSyncPosition=60, Master axis speed=50,

AvoidReversal=FALSE.

16#00 t

Slave axis

speed

100

Slave axis

position

60

Master axis

position

360

290

300

360

Master axis distance

between the two

points: 370

 MasterSyncPosition=300, MasterStartDistance=50, SlaveSyncPosition=60, Master axis speed=50,

AvoidReversal=FALSE, Slave axis start position > 60.

16#00 t

Slave axis

speed

100

Slave axis

position

60

Master axis

position

360

250

300

350

ErrorId

Error

InSync

StartSync

Execute

200

When the synchronization is completed, InSync is TRUE, the target speed is reached also, and then: Slave

axis movement amount = Master axis movement amount * RatioNumerator/RatioDenominator.

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 247

For AvoidReversal: If the slave axis is a modal axis and the master axis speed (a gear ratio multiple) is not

relative to the slave axis speed, MC_GearInPos will try to avoid the reversal of the slave axis. It attempts to

"stretch" the movement of the slave axis by adding 5 slave axis cycles. If the "stretch" is invalid, an error

occurs and the slave axis stops abnormally. If the slave axis speed is related to the master axis speed (a gear

ratio multiple), an error occurs and the slave axis stops abnormally. If the slave axis is a modal axis in linear

mode, an error occurs when Execute inputs the rising edge.

4. Timing diagram

Error

InSync

StartSync

Busy

Execute

MasterStart
Distance

MasterSync
Position

MasterPosition

SlaveSyncPosition

SlavePosition

t

7.2.7 MC_Phasing

MC_Phasing: used to specify the phase difference between the master axis and the slave axis.

1. Instruction format

Instruction Name Graphical Representation ST Representation

MC_Phasing

E-gear

decoupling

instruction

MC_Phasing

 Master:=,

 Slave:=,

 Execute:=,

 PhaseShift:=,

 Velocity:=,

 Acceleration:=,

 Deceleration:=,

 Jerk:=,

 Done=>,

 Busy=>,

 CommandAborted=>,

 Error=>,

 ErrorID=>);

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 248

2. Associated variables

Input/output variables

Input/Output

Variable
Name Data Type

Valid

Range

Initial

Value
Description

Master
Master

axis
AXIS_REF - -

Reference to axis, that is, an

instance of AXIS_REF_SM3

Slave Slave axis AXIS_REF - -
Reference to axis, that is, an

instance of AXIS_REF_SM3

Input variables

Input Variable Name Data Type Valid Range
Initial

Value
Description

Execute Executing BOOL TRUE, FALSE FALSE
The function block is triggered

at the rising edge

PhaseShift

Phase

difference

between the

master axis

and

the slave axis

LREAL - 0

Phase difference between the

master axis and slave axis. A

positive number indicates the

slave axis lags

Velocity Speed LREAL - 0
Max. speed at phase shift

execution

Acceleration Acceleration LREAL - 0
Max. acceleration at phase

shift execution

Deceleration Deceleration LREAL - 0
Max. deceleration at phase

shift execution

Jerk Jerk LREAL - 0
Max. jerk at phase shift

execution

Output variables

Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Done Completed BOOL TRUE, FALSE FALSE

It is TRUE when the e-gear

relationship between the slave

axis and the master axis is

decoupled

Busy
Synchronous

running
BOOL TRUE, FALSE FALSE

The instruction is being

executed

Command

Aborted

Instruction

aborted
BOOL TRUE, FALSE FALSE

Aborted by another control

instruction

Error Error flag BOOL TRUE, FALSE FALSE
Error is set when an error is

detected.

ErrorID Error ID SMC_ERROR - 0
When an exception occurs, the

error ID is output

3. Function description

The phase shift is executed at the rising edge of Execute. The slave axis automatically calculates a smooth

curve, completing the phase shift relative to the master axis. The master/slave axis phase difference is the

value of PhaseShift in the input signal. When the value is a positive number, the slave axis lags behind the

master axis.

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

202409 (V1.0) 249

After the phase shift is completed, Done is TRUE.

The master/slave axis phase difference is compensated according to PhaseShift, Velocity, Acceleration, and

Deceleration.

When the master/slave axis phase difference reaches PhaseShift, the Done signal is output.

During the instruction execution, if the master axis instruction position and feedback position remain

unchanged, the slave axis is adjusted. Then the master/slave axis phase difference is PhaseShift.

The final result of this instruction is the phase shift between the given axis values, and therefore the actual

feedback value of a real axis may be inconsistent with the final shift.

4. Timing diagram

The master and slave axes move in 360 cycles, and the adjustment is performed at the rising edge of the

Execute signal. After the adjustment is completed, the phase shift between the slave axis and the master

axis is the value of PhaseShift.

Execute

Error

Slaveposition

Masterposition

360

360

Done

PhaseShift

Busy

t

INVT Medium and Large-Scale PLC Programming Manual Communication Instructions

202409 (V1.0) 250

8 Communication Instructions

Freeport communication is a point-to-point communication method that uses a peer-to-peer approach to

transmit data, and each end can receive and send data. It employs the full-duplex transmission mode, that

is, data can be sent and received at both ends at the same time.

8.1 Serial Freeport Instructions

8.1.1 Instruction List

Instruction Category Name Function

RS485 freeport communication

instruction

ICP_Serial_Comm_hCom
Create a RS485 freeport

communication connection

ICP_Serial_Comm_Read
RS485 freeport communication

read data

ICP_Serial_Comm_Write
RS485 freeport communication

write data

8.1.2 ICP_Serial_Comm_hCom

Instruction format:

Instruction Name
Graphical

Representation
ST Representation

ICP_Serial_Comm_hCom

RS485 freeport

communication

connection

instruction

ICP_Serial_Comm_hCom(

 Enable:=,

 udiPort:=,

 udiBaudrate:=,

 iParity:=,

 iStopBits:=,

 udiTimeout:=,

 xBusy=>,

 xDone=>,

 hCom=>,

 xError=>,

eError=>);

Associated variables:

Input Type Name Data Type Valid Range
Initial

Value
Description

Enable Enabled BOOL TRUE, FALSE FALSE
If it is TRUE, the function

block is enabled

udiPort
Hardware serial

port number
UDINT - -

Corresponding to

hardware serial ports 1

and 2

udiBaudrate Baud rate UDINT - - Serial port baud rate

iParity Check bit INT - - Serial port check bit

iStopBits Stop bit INT - - Serial port stop bit

udiTimeout Timeout period UDINT - - Timeout period

INVT Medium and Large-Scale PLC Programming Manual Communication Instructions

202409 (V1.0) 251

Output Type Name Data Type Valid Range
Initial

Value
Description

xBusy
Function block

running
BOOL TRUE, FALSE FALSE Run flag

xDone
Completed

signal
BOOL TRUE, FALSE FALSE Completed flag

hCom Handle CAA.HANDLE - -
Communication

establishment handle

xError Error flag BOOL TRUE, FALSE FALSE Error flag

eError Error flag COM.ERROR - 0 Error code

Program example:

For the RS485 freeport communication connection instruction, when the input variable Enable of the

ICP_Serial_Comm_hCom instruction is TRUE, a valid RS485 freeport communication handle will be created

(hCom is greater than 0), and xBusy and xDone are TRUE.

8.1.3 ICP_Serial_Comm_Read

Instruction format:

Instruction Name
Graphical

Representation
ST Representation

ICP_Serial_Comm_Read

RS485 freeport

communication

read data

ICP_Serial_Comm_Read(

 xExecute:=,

 hCom:=,

 read_szSize:=,

 pReadData:=,

 udiTimeOut:=,

 xBusy=>,

 xDone=>,

 xError=>,

 eError=>,

actual_szSize=>);

Associated variables:

Input Type Name Data Type Valid Range
Initial

Value
Description

xExecute Trigger BOOL TRUE, FALSE FALSE

The function block is

triggered at the rising

edge

hCom
Connection

handle
CAA.HANDLE - -

Communication

establishment handle

read_szSize Data length CAA.SIZE - - Read data length

pReadData Data storage CAA.PVOID - -
Read data storage

address

INVT Medium and Large-Scale PLC Programming Manual Communication Instructions

202409 (V1.0) 252

udiTimeOut Timeout period UDINT - -
Communication timeout

period

Output Type Name Data Type Valid Range
Initial

Value
Description

xBusy
Function block

running
BOOL TRUE, FALSE FALSE

Function block running

flag

xDone Completed flag BOOL TRUE, FALSE FALSE Completed flag

xError Error flag BOOL TRUE, FALSE FALSE Read error

eError Error flag COM.ERROR - 0 Error code

actual_szSize Data length CAA.SIZE - - Actual length of read data

Program example:

For the RS485 freeport communication read data instruction, when xExecute in the ICP_Serial_Comm_Read

instruction is TRUE, data is read from the RS485 freeport communication buffer area, and xBusy is TRUE. If

the data is read successfully, xDone is set for one scan cycle, and the read data will be placed in the variable

with the address of pReadData.

8.1.4 ICP_Serial_Comm_Write

Instruction format:

Instruction Name
Graphical

Representation
ST Representation

ICP_Serial_Comm_Write

RS485 freeport

communication

write data

ICP_Serial_Comm_Write(

 xExecute:=,

 hCom:=,

 write_szSize:=,

 pWriteData:=,

 udiTimeOut:=,

 xBusy=>,

 xDone=>,

 xError=>,

eError=>);

Associated variables:

Input Type Name Data Type Valid Range
Initial

Value
Description

xExecute Trigger BOOL TRUE, FALSE FALSE

The function block is

triggered at the rising

edge

hCom
Connection

handle
CAA.HANDLE - -

Communication

establishment handle

write_szSize Data length CAA.SIZE - - Write data length

pWriteData Data storage CAA.PVOID - -
Write data storage

address

INVT Medium and Large-Scale PLC Programming Manual Communication Instructions

202409 (V1.0) 253

udiTimeOut Timeout period UDINT - -
Communication timeout

period

Output Type Name Data Type Valid Range
Initial

Value
Description

xBusy
Function block

running
BOOL TRUE, FALSE FALSE

Function block running

flag

xDone Completed flag BOOL TRUE, FALSE FALSE Completed flag

xError Error flag BOOL TRUE, FALSE FALSE Write error

eError Error flag COM.ERROR - 0 Error code

Program example:

For the RS485 freeport communication read data instruction, when xExecute in the

ICP_Serial_Comm_Write instruction is TRUE, the data with the starting address of pWriteData and the

length of write_szSize in the send buffer set by the user will be sent to the target device. If the data is

sent successfully in the timeout period udiTimeOut, Done is set to TRUE.

Reference program logic:

 Variable Declaration

 Program routine

INVT Medium and Large-Scale PLC Programming Manual Communication Instructions

202409 (V1.0) 254

8.2 TCP Freeport Communication Instructions

8.2.1 Instruction List

Instruction Category Name Function

TCP freeport communication

instruction

ICP_TCP_Comm_Client
Create a TCP client

communication service

ICP_TCP_Comm_Write Send TCP communication data

ICP_TCP_Comm_Read Rceive TCP communication data

INVT Medium and Large-Scale PLC Programming Manual Communication Instructions

202409 (V1.0) 255

Instruction Category Name Function

ICP_TCP_Comm_Connect
Create a TCP connection to the

server

ICP_TCP_Comm_Server
Create a TCP server

communication service

8.2.2 ICP_TCP_Comm_Client

Instruction format:

Instruction Name Graphical Representation ST Representation

ICP_TCP_Comm_Client

Create a TCP

client

communication

service

ICP_TCP_Comm_Client(

 Enable:=,

 RecvIP:=,

 Port_Recv:=,

 Timeout:=,

 Busy=>t,

 Active=>,

 TCPConnection=>,

 Done=>,

 Error=>,

Error_ID=>);

Associated variables:

Input Type Name Data Type Valid Range
Initial

Value
Description

Enable Enabled BOOL TRUE, FALSE FALSE
If it is TRUE, the function

block is enabled

RecvIP Receiving IP STRING - - Receiving controller IP

Port_Recv Receiving port UINT - - Receiving controller port

Timeout Timeout period WORD - 1000
Timeout period for

requesting a connection

Output Type Name Data Type Valid Range
Initial

Value
Description

Busy
Function block

running
BOOL TRUE, FALSE FALSE Running signal

Active
Connection

succeeded flag
BOOL TRUE, FALSE -

The flag indicating that

the server and the client

have established a

communication

successfully

TCPConnection
Connection

handle
CAA.HANDLE - -

The connection handle for

establishing a

communication between

the server and the client

Done Completed flag BOOL TRUE, FALSE FALSE Completed signal

Error Error flag BOOL TRUE, FALSE FALSE Connection error

Error_ID Error ID NBS.ERROR - 0 Error code

Program example:

To create a TCP client communication service, when the input variable Enable of the ICP_TCP_Comm_Client

INVT Medium and Large-Scale PLC Programming Manual Communication Instructions

202409 (V1.0) 256

instruction is TRUE, the local client monitors the connection request from the remote server. When the

client is successfully connected to the server, a valid communication handle will be created between the

client and the remote server (TCPConnection is greater than 0).

8.2.3 ICP_TCP_Comm_Write

Instruction format:

Instruction Name Graphical Representation ST Representation

ICP_TCP_Comm_Write

Send TCP

communication

data

ICP_TCP_Comm_Write(

 Execute:=,

 TCPConnection:=,

 DataSize:=,

 DataPtr_Recv:=,

 Timeout:=,

 Done=>,

 Busy=>,

 Error=>,

Error_ID=>);

Associated variables:

Input Type Name Data Type Valid Range
Initial

Value
Description

Enable Enabled BOOL TRUE, FALSE FALSE
If it is TRUE, the function

block is enabled

TCPConnection
Connection

handle
CAA.HANDLE - - Connection handle

DataSize Data length CAA.SIZE - - Data length, byte

DataPtr_Recv Data address CAA.PVOID - - Data address

Timeout Timeout period WORD - 1000
Timeout period for

requesting a connection

Output Type Name Data Type Valid Range
Initial

Value
Description

Done Completed flag BOOL TRUE, FALSE - Completed signal

Busy
Function block

running
BOOL TRUE, FALSE FALSE Running signal

Error Error flag BOOL TRUE, FALSE FALSE Sending error

Error_ID Error ID NBS.ERROR - 0 Error code

Program example:

To send TCP communication data, when the input variable Enable of the ICP_TCP_Comm_Write instruction

is TRUE, the data with the starting address of DataPtr_Recv and the length of DataSize in the send buffer set

by the user will be sent to the target device connected to the TCPConnection handle. If the data is sent

successfully within the timeout period Timeout, Done is set to TRUE.

INVT Medium and Large-Scale PLC Programming Manual Communication Instructions

202409 (V1.0) 257

8.2.4 ICP_TCP_Comm_Read

Instruction format:

Instruction Name Graphical Representation ST Representation

ICP_TCP_Comm_Read

Receive TCP

communication

data

ICP_TCP_Comm_Read(

Enable:=,

TCPConnection:=,

DataSize:=,

DataPtr_Recv:=,

Done=>,

Busy=>,

Ready=>,

Count=>,

Error=>,

Error_ID=>);

Associated variables:

Input Type Name Data Type Valid Range
Initial

Value
Description

Enable Enabled BOOL TRUE, FALSE FALSE
If it is TRUE, the function

block is enabled

TCPConnection
Connection

handle
CAA.HANDLE - - Connection handle

DataSize Data length CAA.SIZE - - Data length, byte

DataPtr_Recv Data address CAA.PVOID - - Data address

Output Type Name Data Type Valid Range
Initial

Value
Description

Done Completed flag BOOL TRUE, FALSE FALSE Completed signal

Busy
Function block

running
BOOL TRUE, FALSE FALSE Running signal

Ready
Connection

succeeded
BOOL TRUE, FALSE FALSE

Read data from the buffer,

and if there is data, set

the flag bit for one scan

cycle

Count Data length CAA.SIZE - -
Actual length of received

data

Error Error flag BOOL TRUE, FALSE FALSE Receiving error

Error_ID Error ID NBS.ERROR - 0 Error code

Program example:

To receive TCP communication data, when the input variable Enable of the ICP_TCP_Comm_Read

instruction is TRUE, data will be read from the TCP communication buffer, and Busy is TRUE. If the data is

read successfully, Done is set for one scan cycle; the read data will be placed in the variable with the address

DataPtr_Recv; at the same time, Ready is set for one scan cycle; the actual size value of the received data

area will be assigned to Count, and the value of Count will be cleared after one scan cycle.

INVT Medium and Large-Scale PLC Programming Manual Communication Instructions

202409 (V1.0) 258

8.2.5 ICP_TCP_Comm_Server

Instruction format:

Instruction Name Graphical Representation ST Representation

ICP_TCP_Comm_Server

Create a TCP

server

communication

service

ICP_TCP_Comm_Server(

Enable:=,

RecvIP:=,

Port_Recv:=,

Busy=>,

Done=>,

Error=>,

Error_ID=>,

TCPServer=>);

Associated variables:

Input Type Name Data Type Valid Range
Initial

Value
Description

Enable Enabled BOOL TRUE, FALSE FALSE
If it is TRUE, the function

block is enabled

RecvIP Controller IP STRING - - Server controller IP

Port_Recv
Controller port

number
UINT - -

Server controller port

number

Output Type Name Data Type Valid Range
Initial

Value
Description

Busy
Function block

running
BOOL TRUE, FALSE FALSE Run flag

Done Completed flag BOOL TRUE, FALSE FALSE Completed signal

Error Error flag BOOL TRUE, FALSE FALSE Connection error

Error_ID Error ID NBS.ERROR - - Error code

TCPServer Server handle CAA.HANDLE - - TCP server handle

Program example:

To create a TCP server communication service, when the input variable Enable of the

ICP_TCP_Comm_Server instruction is TRUE, a valid communication handle will be created between the

server and the remote client (TCPServer is not equal to 0).

INVT Medium and Large-Scale PLC Programming Manual Communication Instructions

202409 (V1.0) 259

8.2.6 ICP_TCP_Comm_Connect

Instruction format:

Instruction Name Graphical Representation ST Representation

ICP_TCP_Comm_Connect

Create a

TCP

connection

to the

server

ICP_TCP_Comm_Connect(

Enable:=,

TCPServer:=,

Busy=>,

Active=>,

Done=>,

Error=>,

Error_ID=>,

TCPConnection=>);

Associated variables:

Input Type Name Data Type Valid Range
Initial

Value
Description

Enable Enabled BOOL TRUE, FALSE FALSE
If it is TRUE, the function

block is enabled

TCPServer
Connection

handle
CAA.HANDLE - - TCP connection handle

Output Type Name Data Type Valid Range
Initial

Value
Description

Busy
Function block

running
BOOL TRUE, FALSE FALSE Run flag

Active
Connection

succeeded
BOOL TRUE, FALSE FALSE

The server monitors the

remote client connection

handle flag

Done Completed flag BOOL TRUE, FALSE FALSE Completed signal

Error Error flag BOOL TRUE, FALSE FALSE Connection error

Error_ID Error ID NBS.ERROR - - Error code

TCPConnection
Connection

handle
CAA.HANDLE - -

The connection handle for

establishing a

communication between

the server and the client

Program example:

To create a TCP connection to the server instruction, when the input variable Enable of the

ICP_TCP_Comm_Connect instruction is TRUE, the local server monitors the connection request from the

remote client. When the client successfully connects to the server through the server handle TCPServer, a

valid communication handle will be created between the server and the remote client (TCPConnection is

greater than 0).

INVT Medium and Large-Scale PLC Programming Manual Communication Instructions

202409 (V1.0) 260

8.3 UDP Freeport Communication Instructions

8.3.1 Instruction List

Instruction Category Name Function

UDP freeport communication

instruction

ICP_UDP_Comm_Send Send UDP communication data

ICP_UDP_Comm_Receive Rceive UDP communication data

8.3.2 ICP_UDP_Comm_Send

Instruction format:

Instruction Name Graphical Representation ST Representation

ICP_UDP_Comm_Send

Send UDP

communication

data

ICP_UDP_Comm_Send(

Enable:=,

Send_IP:=,

Port_Send:=,

Recv_IP:=,

Port_Recv:=,

DataSize:=,

DataPtr_Send:=,

Timeout:=,

Done=>,

Busy=>,

xError=>);

Associated variables:

Input Type Name Data Type Valid Range
Initial

Value
Description

Enable Enabled BOOL TRUE, FALSE FALSE
If it is TRUE, the function

block is enabled

Send_IP Sending IP STRING - - Sending controller IP

Port_Send Sending port UINT - - Sending controller port

Recv_IP Receiving IP STRING - - Receiving controller IP

Port_Recv Receiving port UINT - - Receiving controller port

DataSize Data length CAA.SIZE - - Data length to be sent

DataPtr_Send Data storage CAA.PVOID - -
Received data storage

address

Timeout Timeout period WORD - 1000
Timeout period for

requesting a connection

Output Type Name Data Type Valid Range
Initial

Value
Description

Done Completed flag BOOL TRUE, FALSE FALSE Completed signal

Busy
Function block

running
BOOL TRUE, FALSE FALSE Run flag

xError Error flag BOOL TRUE, FALSE FALSE Sending error

Error_ID Error ID NBS.ERROR - 0 Error code

Program example:

To send UDP communication data, when the input variable Enable of the ICP_UDP_Comm_Send instruction

is TRUE, the data with the starting address of DataPtr_Send and the length of DataSize in the send buffer set

INVT Medium and Large-Scale PLC Programming Manual Communication Instructions

202409 (V1.0) 261

by the user will be sent to the target device with the receiving IP of Recv_IP. If the data is sent successfully

within the timeout period Timeout, Done is set to TRUE.

8.3.3 ICP_UDP_Comm_Receive

Instruction format:

Instruction Name Graphical Representation ST Representation

ICP_UDP_Comm_Receive

Receive UDP

communication

data

ICP_UDP_Comm_Receive(

Enable:=,

RecvIP:=,

Port_Recv:=,

DataSize:=,

DataPtr_Recv:=,

Done=>,

Busy=>,

xError=>,

Error_ID=>,

xReady=>,

IpFrom=>,

PortFrom=>,

Count=>);

Associated variables:

Input Type Name Data Type Valid Range
Initial

Value
Description

Enable Enabled BOOL TRUE, FALSE FALSE
If it is TRUE, the function

block is enabled

Recv_IP Receiving IP STRING - - Receiving controller IP

Port_Recv Receiving port UINT - - Receiving controller port

DataSize Data length CAA.SIZE - - Data length to be sent

DataPtr_Recv Data storage CAA.PVOID - -
Received data storage

address

Output Type Name Data Type Valid Range
Initial

Value
Description

Done Completed flag BOOL TRUE, FALSE FALSE Completed signal

Busy
Function block

running
BOOL TRUE, FALSE FALSE Run flag

xError Error flag BOOL TRUE, FALSE FALSE Sending error

Error_ID Error ID NBS.ERROR - 0 Error code

xReady Succeeded flag BOOL TRUE, FALSE FALSE Receiving succeeded flag

IpFrom Sending IP NBS.IP_ADDR - - Data sending controller IP

PortFrom Sending port UINT - - Data sending controller

INVT Medium and Large-Scale PLC Programming Manual Communication Instructions

202409 (V1.0) 262

port

Count Data length CAA.SIZE - -
Actual length of received

data

Program example:

To receive UDP communication data, when the input variable of the ICP_UDP_Comm_Receive instruction is

TRUE, data will be read from the UDP communication buffer and Busy is TRUE. If the data is read

successfully, Done is set for one scan cycle; the read data will be placed in the variable with the address

DataPtr_Recv; at the same time, xReady is set for one scan cycle; the actual size value of the received data

area will be assigned to Count, and the value of Count will be cleared after one scan cycle.

INVT Medium and Large-Scale PLC Programming Manual Pulse Output Instructions

202409 (V1.0) 263

9 Pulse Output Instructions

9.1 Auxiliary Instructions

Note: The content of this chapter is only applicable to the TM series PLC.

9.1.1 IMC_GetSys_P

Instruction format:

Instruction Name Graphical Representation ST Representation

IMC_GetSys_P

Get

system

informati

on

Associated variables:

Input

Variable
Name Data Type Valid Range Initial Value Description

Enable
Function block

enabling bit
BOOL TRUE, FALSE TRUE

Valid if it is TRUE, and

invalid if it is FALSE

ValueMode
Value group

type

_eMc_Sys_V

alueMode

_mcSysAxisNum,

_mcSysGroupNum,

_mcSysCAMNum,

_mcSysGearNum,

_mcSysFlyCutNum,

_mcSysTraceNum

_mcSysAxisNu

m

Value group type, the

number of axes

supported by the

system:

_mcSysAxisNum; the

number of axis groups

supported by the

system:

_mcSysGroupNum; the

number of cam tables

supported by the

system:

_mcSysCAMNum; the

number of electronic

gear groups supported

by the system:

_mcSysGearNum; the

number of flying shear

groups supported by the

system:

_mcSysFlyCutNum; the

number of tracking

shear groups supported

by the system:

_mcSysTraceNum

INVT Medium and Large-Scale PLC Programming Manual Pulse Output Instructions

202409 (V1.0) 264

Output

Variable
Name Data Type Valid Range Initial Value Description

ReturnVal

ue
Return value UINT - 0

Return value, for

example: 4 (axis), 2 (axis

group), 3 (number of

cam/gear/flying

shear/tracking shear

groups)

Version Version STRING - V0.0.0.1
Return the version

number

Busy

Function

block

executing

BOOL TRUE, FALSE FALSE

TRUE - The function

block is being executed

FALSE - The function

block is not executed

Error

Function

block error

flag

BOOL TRUE, FALSE FALSE
TRUE - error, FALSE - no

error

ErrorID Error ID
_eMc_Sys_E

rrorID
-

_mcError_NU

LL
Error code

Function description: This function block is used to get system information.

9.1.2 IMC_Axis_P

Instruction format:

Instruction Name Graphical Representation ST Representation

IMC_Axis_P

Axis

parameter

configuration

INVT Medium and Large-Scale PLC Programming Manual Pulse Output Instructions

202409 (V1.0) 265

Associated variables:

Input Variable Name Data Type Valid Range
Initial

Value
Description

AxisID Axle number
_eMc_Axis

_ID
0–3 255

Axis number (Note: The initial

value 255 is a protection

measure to avoid the situation

where no initial value is

assigned, the same below)

Execute

Function

block

enabling bit

BOOL TRUE, FALSE FALSE
Valid at the rising edge, and

invalid at the falling edge

MaxVelocity

Max. running

speed of the

axis

LREAL >1 5000

Max. running speed of the

current axis (unit/s), set by the

user

MaxAcceleration

Max. running

acceleration

of the axis

LREAL >0 500
Max. allowable acceleration of

the current axis (unit/s2)

MaxDeceleration

Max. running

deceleration

of the axis

LREAL >0 500
Max. allowable deceleration of

the current axis (unit/s2)

MaxHomeSpeed

Max. homing

speed of the

axis

LREAL 1–80 10
Max. homing speed of the

current axis (unit/s)

MinVim2Speed

Max. homing

speed at step

2

LREAL 1–2 1
Max. homing speed at step 2 of

the current axis (unit/s)

MaxVim1Speed

Max. homing

speed at

stage 1

LREAL 1–10 3
Max. homing speed at step 1 of

the current axis (unit/s)

MaxJogSpeed

Max. jogging

speed of the

axis

LREAL 1–5000 5000
Max. jogging speed of the

current axis (unit/s)

LimitEnable
Soft limit

enabling flag
BOOL TRUE, FALSE TRUE

TRUE->Soft limit on;

FALSE->Soft limit off (not

considered in single-axis

speed mode)

MaxPLimit
Max. positive

limit position
LREAL >0

9999999

99.999

Max. positive limit position of

the current axis (unit), not

considered in single-axis

speed mode

MaxNLimit

Max.

negative

limit position

LREAL <0
-999999

999.999

Max. negative limit position of

the current axis (unit), not

considered in single-axis

speed mode

INVT Medium and Large-Scale PLC Programming Manual Pulse Output Instructions

202409 (V1.0) 266

Input Variable Name Data Type Valid Range
Initial

Value
Description

PulseData

Number of

pulses

required for

one

revolution of

the current

axis

UDINT >0 10000

Number of pulses required for

one revolution of the current

axis (unit/pulse)

DistanceData

Running

distance of

one

revolution of

the current

axis

LREAL >0 10

Running distance of one

revolution of the current axis

(unit/mm)

MaxJerk

Max. jerk of

the current

axis

LREAL 10–400 100
Max. jerk of the current axis

(unit/s3)

Mode

Pulse control

mode of the

current axis

_eMc_Sys_

PulseMode

_mcPulseSign,

_mcCWCCW,

_mcQEP

_mcPul

seSign

Pulse control mode of the

current axis: _mcPulseSign:

“pulse + sign” mode;

_mcCWCCW: FWD/REV pulse

train mode; _mcQEP:

quadrature-encoded pulse

mode

HomeLimit

Stop when

hard limit is

detected

during

homing

_eMc_Sys_

HomeLimit

_mcLimitDecS

top,_mcLimitI

mmediatelySt

op

_mcLim

itDecSt

op

_mcLimitDecStop: Decelerate

to stop

_mcLimitImmediatelyStop:

Stop immediately

Output Variable Name Data Type Valid Range
Initial

Value
Description

Done

Function

block

completed

state

BOOL TRUE, FALSE FALSE

TRUE - Axis definition

completed

FALSE - Axis definition not

completed

Error

Function

block error

flag

BOOL TRUE, FALSE FALSE TRUE - error, FALSE - no error

ErrorID Error ID
_eMc_Sys_

ErrorID
-

_mcErr,

_NULL
Error ID

Function description: This function block is used to set the associated parameters of the instruction axis.

The pulse type only supports 4 axes.

INVT Medium and Large-Scale PLC Programming Manual Pulse Output Instructions

202409 (V1.0) 267

9.1.3 IMC_Power_P

Instruction format:

Instruction Name Graphical Representation ST Representation

IMC_Power_P
Axis

enabling

Associated variables:

Input

Variable
Name Data Type Valid Range

Initial

Value
Description

AxisID Axle number _eMc_Axis_ID 0-3 255 Axle number

Enable
Function block

enabling bit
BOOL

TRUE,

FALSE
TRUE

Valid if it is TRUE, and invalid if it

is FALSE

AxisError
Axis alarm

signal
BOOL

TRUE,

FALSE
FALSE

TRUE: Report an alarm

FALSE: Do not report an alarm

AxisEnable
Axis enabling

signal
BOOL

TRUE,

FALSE
TRUE

TRUE: The axis has been enabled

FALSE: The axis is not enabled

Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Status Axis status BOOL
TRUE,

FALSE
FALSE

TRUE: The axis is ready

FALSE: The axis is not ready

Valid
Axis enabling

state
BOOL

TRUE,

FALSE
FALSE

TRUE: The axis has been enabled

TRUE: The axis is not enabled

Busy
Function block

executing
BOOL

TRUE,

FALSE
FALSE

TRUE: The function block is being

executed

FALSE: The function block is not

executed

Error
Function block

error flag
BOOL

TRUE,

FALSE
FALSE

TRUE: An error occurs

FALSE: No error occurs

ErrorID Error ID
_eMc_Sys_Err

orID
-

_mcError

_NULL
Error code

Function description: If Enable is TRUE, the function block is executed; if AxisEnable is TRUE, the axis is

enabled.

Note: This function block can only enable an internal axis.

INVT Medium and Large-Scale PLC Programming Manual Pulse Output Instructions

202409 (V1.0) 268

9.1.4 IMC_SetPosition_P

Instruction format:

Instruction Name Graphical Representation ST Representation

IMC_SetPosition_P

Set

the

curren

t

instru

ction

positi

on of

the

axis

Associated variables:

Input

Variable
Name Data Type Valid Range Initial Value Description

AxisID Axle number _eMc_Axis_ID 0-3 255 Axle number

Execute
Function block

enabling bit
BOOL TRUE, FALSE FALSE

Valid at the rising edge,

and invalid at the

falling edge

Position Position value LREAL Real number 0
Current position

setting value

Relative Position mode
_eMc_Position

_Mode

_mcAbsolute,

_mcRelative
_mcAbsolute

_mcAbsolute -

Absolute mode

_mcRelative - Relative

mode

Output

Variable
Name Data Type Valid Range Initial Value Description

Done
Function block

completed state
BOOL TRUE, FALSE FALSE

TRUE - Position setting

is completed

FALSE - Position setting

is not completed

Busy
Function block

executing
BOOL TRUE, FALSE FALSE

TRUE - The function

block is being executed

FALSE - The function

block is not executed

Error
Function block

error flag
BOOL TRUE, FALSE FALSE

TRUE - error, FALSE -

no error

ErrorID Error ID
_eMc_Sys_Err

orID
-

_mcError_NU

LL
Error code

Function description: This function block is triggered at the rising edge of Execute. It indicates the absolute

position mode when Relative is set to _mcAbsolute, and the relative position mode when Relative is set to

_mcRelative.

INVT Medium and Large-Scale PLC Programming Manual Pulse Output Instructions

202409 (V1.0) 269

9.1.5 IMC_ReadCmdPosition_P

Instruction format:

Instruction Name Graphical Representation ST Representation

IMC_ReadCmdPosition

_P

Read the

actual

position

of the

axis

Associated variables:

Input

Variable
Name Data Type Valid Range Initial Value Description

AxisID Axle number _eMc_Axis_ID 0–3 255 Axle number

Enable

Function

block

enabling bit

BOOL TRUE, FALSE TRUE
Valid if it is TRUE, and

invalid if it is FALSE

Output

Variable
Name Data Type Valid Range Initial Value Description

Busy

Function

block

executing

BOOL TRUE, FALSE FALSE

TRUE: The function

block is being executed

FALSE: The function

block is not executed

Value Position value LREAL Real number 0

Read the actual

position value of the

specified axis

AxisDirection Axis direction
_eMc_Sys_Dir

ection

_mcNegative,

_mcForward
_mcNegative

_mcNegative: Negative

_mcForward: Forward

Error

Function

block error

flag

BOOL TRUE, FALSE FALSE
TRUE: An error occurs

FALSE: No error occurs

ErrorID Error ID
_eMc_Sys_Err

orID
- _mcError_NULL Error code

Function description: This function block is triggered at the rising edge of Enable to read the actual position

of the specified axis, and Value returns the actual position value of the axis.

9.1.6 IMC_ReadParameter_P

Instruction format:

Instruction Name Graphical Representation ST Representation

IMC_ReadParameter_P

Read

axis

definitio

n

paramet

ers

Associated variables:

Input Variable Name Data Type
Valid

Range

Initial

Value
Description

AxisID Axle number _eMc_Axis_ID 0–3 255 Axle number

INVT Medium and Large-Scale PLC Programming Manual Pulse Output Instructions

202409 (V1.0) 270

Input Variable Name Data Type
Valid

Range

Initial

Value
Description

Enable

Function

block

enabling bit

BOOL
TRUE,

FALSE
TRUE

Valid if it is TRUE

Invalid if it is False

ParameterNumber
Parameter

number
DINT 1000-1012 1000

Axis definition parameter

number

For example: 1000 is the max.

running speed

Output Variable Name Data Type
Valid

Range

Initial

Value
Description

Busy

Function

block

executing

BOOL
TRUE,

FALSE
FALSE

TRUE: The function block is

being executed

FALSE: The function block is

not executed

Value Return value LREAL 1000-1012 0
Axis definition parameter

output

Error

Function

block error

flag

BOOL
TRUE,

FALSE
FALSE

TRUE: An error occurs,

FALSE: No error occurs

ErrorID Error ID
_eMc_Sys_Err

orID
-

_mcErr,

_NULL
Error code

Function description: valid if it is TRUE. Read the corresponding value according to the parameter sequence

number listed below.

The parameter sequence number is as follows:

Sequence

Number
Name Description

1000 MaxVelocity Max. running speed of the current axis (unit/s)

1001 MaxAcceleration Max. allowable acceleration of the current axis (unit/s2)

1002 MaxHomeSpeed Max. homing speed of the current axis (unit/s)

1003 MinVim2Speed Max. homing speed at step 2 of the current axis (unit/s)

1004 MaxVim1Speed Min. homing speed at step 2 of the current axis (unit/s)

1005 MaxJogSpeed Max. jogging speed of the current axis (unit/s)

1006 LimitEnable
Soft limit enabling flag

TRUE: soft limit on; FALSE: soft limit off

1007 MaxPLimit Max. positive limit position of the current axis (unit)

1008 MaxNLimit Max. negative limit position of the current axis (unit)

1009 PulseData
Number of pulses required for one revolution of the current axis

(unit/pulse)

1010 DistanceData Running distance of one revolution of the current axis (unit/mm)

1011 MaxJerk Max. allowable jerk of the current axis

1012 Mode

Pulse control mode of the current axis:

_mcPulseSign: “pulse + sign” mode

_mcCWCCW: FWD/REV pulse train mode

_mcQEP: quadrature-encoded pulse mode

INVT Medium and Large-Scale PLC Programming Manual Pulse Output Instructions

202409 (V1.0) 271

9.1.7 IMC_ReadStatus_P

Instruction format:

Instruction Name Graphical Representation ST Representation

IMC_ReadStatus_P

Read the

running

status of

the axis

Associated variables:

Input

Variable
Name Data Type Valid Range Initial Value Description

AxisID Axle number _eMc_Axis_ID 0–3 255 Axle number

Enable
Function block

enabling bit
BOOL TRUE, FALSE TRUE

Valid if it is TRUE, and

invalid if it is FALSE

Output

Variable
Name Data Type Valid Range Initial Value Description

Valid Validity status BOOL TRUE, FALSE FALSE
TRUE - Valid output,

FALSE - Invalid output

Busy
Function block

executing
BOOL TRUE, FALSE FALSE

TRUE - The function block

is being executed

FALSE - The function

block is not executed

Status Axis status
_eMc_Axis_Sta

tus
- _mcDisabled

Return the status of the

axis

Error
Function block

error flag
BOOL TRUE, FALSE FALSE

TRUE - error, FALSE - no

error

ErrorID Error ID
_eMc_Sys_Err

orID
- _mcError_NULL Error code

Function description: If it is TRUE, the function block returns the current state of the axis.

9.1.8 IMC_SendData_P

Instruction format:

Instruction Name Graphical Representation ST Representation

IMC_SendData_P Send data

Associated variables:

Output

Variable
Name Data Type Valid Range Initial Value Description

Axis1Pulse
Axis 1 pulse

feedback
UINT

Positive

number
0

Axis 1 pulse

feedback

Axis2Pulse
Axis 2 pulse

feedback
UINT

Positive

number
0

Axis 2 pulse

feedback

INVT Medium and Large-Scale PLC Programming Manual Pulse Output Instructions

202409 (V1.0) 272

Output

Variable
Name Data Type Valid Range Initial Value Description

Axis3Pulse
Axis 3 pulse

feedback
UINT

Positive

number
0

Axis 3 pulse

feedback

Axis4Pulse
Axis 4 pulse

feedback
UINT

Positive

number
0

Axis 4 pulse

feedback

Axis1Direction
Axis 1

direction
_eMc_Sys_Direction

_mcNegative,

mcForward
_mcNegative

_mcNegative:

Negative

_mcForward:

Forward

Axis2Direction
Axis 2

direction
_eMc_Sys_Direction

_mcNegative,

mcForward
_mcNegative

_mcNegative:

Negative

_mcForward:

Forward

Axis3Direction
Axis 3

direction
_eMc_Sys_Direction

_mcNegative,

mcForward
_mcNegative

_mcNegative:

Negative

_mcForward:

Forward

Axis4Direction
Axis 4

direction
_eMc_Sys_Direction

mcNegative,

mcForward
_mcNegative

_mcNegative:

Negative

_mcForward:

Forward

Function description: This function block is used to send data to the underlayer. This module must be added

after all motion control function blocks are called in pulse mode.

9.1.9 IMC_Acc2Jerk_P

Instruction format:

Instruction Name Graphical Representation ST Representation

IMC_Acc2Jerk_P

Calculate

the jerk

from the

axis

accelerati

on

Associated variables:

Input

Variable
Name

Data

Type
Valid Range Initial Value Description

Enable
Function block

enabling bit
BOOL TRUE, FALSE TRUE

Valid if it is TRUE, and

invalid if it is FALSE

Velocity Speed LREAL
Positive

number
100 Target velocity

Acceleration Acceleration LREAL
Positive

number
10

Target acceleration,

unit/s 2

Output

Variable
Name

Data

Type
Valid Range Initial Value Description

AccTime ACC time LREAL
Positive

number
0 Acceleration time, s

Jerk Jerk LREAL
Positive

number
0 Jerk, unit/s 3

Done Function block BOOL TRUE, FALSE FALSE TRUE: The function block

INVT Medium and Large-Scale PLC Programming Manual Pulse Output Instructions

202409 (V1.0) 273

completed

state

has been executed

FALSE: The function block

is not executed

Error
Function block

error flag
BOOL TRUE, FALSE FALSE

TRUE: An error occurs

FALSE: No error occurs

ErrorID Error ID
_eMc_Sys

_ErrorID
- _mcError_NULL Error code

Function description: This function block is used to calculate the AccTime and Jerk values according to the

speed and acceleration values.

9.1.10 IMC_AccTime2Jerk_P

Instruction format:

Instruction Name Graphical Representation ST Representation

IMC_AccTime2Je

rk_P

Calculate

the jerk

from the

accelerati

on time

Associated variables:

Input

Variable
Name

Data

Type
Valid Range Initial Value Description

Enable
Function block

enabling bit
BOOL TRUE, FALSE TRUE

Valid if it is TRUE, and

invalid if it is FALSE

Velocity Speed LREAL
Positive

number
100 Target speed, unit/s

AccTime ACC time LREAL
Positive

number
1

Target acceleration time,

s

Output

Variable
Name

Data

Type
Valid Range Initial Value Description

Acceleration Acceleration LREAL
Positive

number
0

Target acceleration, unit/s

2

Jerk Jerk LREAL
Positive

number
0 Jerk, unit/s 3

Done

Function block

completed

state

BOOL TRUE, FALSE FALSE

TRUE: The function block

has been executed

FALSE: The function block

is not executed

Error
Function block

error flag
BOOL TRUE, FALSE FALSE

TRUE: An error occurs

FALSE: No error occurs

ErrorID Error ID
_eMc_Sy

s_ErrorID
- _mcError_NULL Error code

Function description: This function block is used to calculate the Acceleration and Jerk values according to

the speed and acceleration time values.

INVT Medium and Large-Scale PLC Programming Manual Pulse Output Instructions

202409 (V1.0) 274

9.2 Single Axis Instructions

Note: The content of this chapter is only applicable to the TM series PLC.

9.2.1 IMC_Jog_P

Instruction format:

Instruction Name Graphical Representation ST Representation

IMC_Jog_P
Continuous

jogging

Associated variables:

Input Variable Name Data Type Valid Range Initial Value Description

AxisID Axle number _eMc_Axis_ID 0–3 255 Axle number

PositiveEnable
Forward

running
BOOL

TRUE,

FALSE
FALSE

Start at the rising edge,

and stop at the falling

edge

NegativeEnable
Backward

running
BOOL

TRUE,

FALSE
FALSE

Start at the rising edge,

and stop at the falling

edge

Velocity Speed LREAL
Positive

number
10

Axis running speed

(unit/s)

Acceleration Acceleration LREAL
Positive

number
10

Axis running

acceleration (unit/s 2)

Deceleration Deceleration LREAL
Positive

number
10

Axis running

deceleration (unit/s 2)

Jerk Jerk LREAL Positive or 0 0 Jerk (unit/s3)

Output

Variable
Name Data Type Valid Range Initial Value Description

Busy

Function

block

executing

BOOL
TRUE,

FALSE
FALSE

TRUE: The function

block is being executed

FALSE: The function

block is not executed

CommandAbort

ed

Function

block aborted
BOOL

TRUE,

FALSE
FALSE

TRUE: Aborted

FALSE: Not aborted

Error

Function

block error

flag

BOOL
TRUE,

FALSE
FALSE

TRUE: An error occurs

FALSE: No error occurs

ErrorID Error ID
_eMc_Sys_Er

rorID
- _mcError_NULL Error code

Function description: The axis is standstill initially. The PositiveEnable parameter controls the start and stop

of the axis in the forward direction, and the NegativeEnable parameter controls the start and stop of the axis

in the backward direction.

INVT Medium and Large-Scale PLC Programming Manual Pulse Output Instructions

202409 (V1.0) 275

9.2.2 IMC_Inch_P

Instruction format:

Instruction Name Graphical Representation ST Representation

IMC_Inch_P Inching

Associated variables:

Input Variable Name Data Type Valid Range
Initial

Value
Description

AxisID
Axle

number
_eMc_Axis_ID 0–3 255 Axle number

InchForward
Forward

running
BOOL TRUE, FALSE FALSE

Start at the rising edge,

and stop at the falling

edge

InchBackward
Backward

running
BOOL TRUE, FALSE FALSE

Start at the rising edge,

and stop at the falling

edge

Distance Distance LREAL Real number 0.5
Axis running distance

(unit)

Velocity Speed LREAL
Positive

number
10

Axis running speed

(unit/s)

Acceleration
Accelerati

on
LREAL

Positive

number
10

Axis running

acceleration (unit/s 2)

Deceleration
Decelerati

on
LREAL

Positive

number
10

Axis running

deceleration (unit/s 2)

Jerk Jerk LREAL Positive or 0 0 Jerk (unit/s3)

Output Variable Name Data Type Valid Range
Initial

Value
Description

Done

Function

block

completed

state

BOOL TRUE, FALSE FALSE

TRUE: The inching

operation is completed,

FALSE: The inching

operation is not

completed

Busy

Function

block

executing

BOOL TRUE, FALSE FALSE

TRUE: The function

block is being executed

FALSE: The function

block is not executed

INVT Medium and Large-Scale PLC Programming Manual Pulse Output Instructions

202409 (V1.0) 276

CommandAborted

Function

block

aborted

BOOL TRUE, FALSE FALSE
TRUE: Aborted

FALSE: Not aborted

Error

Function

block error

flag

BOOL TRUE, FALSE FALSE
TRUE: An error occurs

FALSE: No error occurs

ErrorID Error ID _eMc_Sys_ErrorID -
mcError

NULL
Error ID

Function description: The InchForward parameter controls the inching movement in the forward direction,

the InchBackward parameter controls the inching movement in the backward direction, and it supports

S-type acceleration and deceleration.

9.2.3 IMC_MoveAbsolute_P

Instruction format:

Instruction Name Graphical Representation ST Representation

IMC_MoveAbsolu

te_P

Single

axis

absolute

motion

Associated variables:

Input Variable Name Data Type Valid Range
Initial

Value
Description

AxisID
Axle

number

_eMc_Axis_I

D
0–3 255 Axle number

Execute

Function

block

enabling bit

BOOL
TRUE,

FALSE
FALSE

Valid at the rising edge, and

invalid at the falling edge

Position
Absolute

position
LREAL

Real

number
0

Absolute running distance of

the axis (unit)

Velocity
Running

speed
LREAL

Positive

number
10 Speed (unit/s)

Acceleration
Acceleratio

n
LREAL

Positive

number
10

Axis running acceleration

(unit/s 2)

Jerk JerK LREAL Positive or 0 0 Jerk (unit/s3)

Output Variable Name Data Type Valid Range
Initial

Value
Description

Done

Function

block

completed

state

BOOL
TRUE,

FALSE
FALSE

TRUE: The function block has

been executed

FALSE: The function block is

not executed

Busy

Function

block

executing

BOOL
TRUE,

FALSE
FALSE

TRUE: The function block is

being executed

FALSE: The function block is

not executed

INVT Medium and Large-Scale PLC Programming Manual Pulse Output Instructions

202409 (V1.0) 277

CommandAborted

Function

block

aborted

BOOL
TRUE,

FALSE
FALSE

TRUE: Aborted

FALSE: Not aborted

Error

Function

block error

flag

BOOL
TRUE,

FALSE
FALSE

TRUE: An error occurs

FALSE: No error occurs

ErrorID Error ID
_eMc_Sys_E

rrorID
-

mcError

NULL
Error ID

Function description: This function block is triggered at the rising edge of Execute. The position instruction

runs in absolute position mode and supports trapezoidal and S-curve acceleration and deceleration.

9.2.4 IMC_MoveRelative_P

Instruction format:

Instruction Name Graphical Representation ST Representation

IMC_MoveRelativ

e_P

Single axis

relative

motion

Associated variables:

Input Variable Name Data Type Valid Range
Initial

Value
Description

AxisID Axle number _eMc_Axis_ID 0–3 255 Axle number

Execute
Function block

enabling bit
BOOL TRUE, FALSE FALSE

Valid at the rising edge,

and

invalid at the falling edge

Position
Relative

position
LREAL Real number 0

Relative running distance

of the axis (unit)

Velocity Running speed LREAL
Positive

number
10 Speed (unit/s)

Acceleration Acceleration LREAL
Positive

number
10

Axis running acceleration

(unit/s 2)

Jerk Jerk LREAL Positive or 0 0 Jerk (unit/s3)

Output Variable Name Data Type Valid Range
Initial

Value
Description

Done

Function block

completed

state

BOOL TRUE, FALSE FALSE

TRUE: The function block

has been executed

FALSE: The function

block is not executed

Busy
Function block

executing
BOOL TRUE, FALSE FALSE

TRUE: The function block

is being executed

FALSE: The function

block is not executed

INVT Medium and Large-Scale PLC Programming Manual Pulse Output Instructions

202409 (V1.0) 278

CommandAborted
Function block

aborted
BOOL TRUE, FALSE FALSE

TRUE: Aborted

FALSE: Not aborted

Error
Function block

error flag
BOOL TRUE, FALSE FALSE

TRUE: An error occurs

FALSE: No error occurs

ErrorID Error ID
_eMc_Sys_Er

rorID
-

_mcError

_NULL
Error ID

Function description: This function block is triggered at the rising edge of Execute. The position instruction

runs in relative position mode and supports trapezoidal and S-curve acceleration and deceleration.

9.2.5 IMC_MoveVelocity_P

Instruction format:

Instruction Name Graphical Representation ST Representation

IMC_MoveVelocity_P
Speed

mode

Associated variables:

Input

Variable
Name Data Type Valid Range Initial Value Description

AxisID Axle number _eMC_Axis_ID 0–3 255 Axle number

Execute
Function block

enabling bit
BOOL TRUE, FALSE FALSE

Valid at the rising edge,

and

invalid at the falling

edge

Direction
Axis motion

direction

_eMc_Sys_Dir

ection

mcNegative,

mcForward
_mcNegative

_mcNegative:

Backward running,

_mcForward: Forward

running

Velocity Running speed LREAL
Positive

number
10 Speed (unit/s)

Acceleration Acceleration LREAL
Positive

number
10

Axis running

acceleration (unit/s^2)

Jerk Jerk LREAL Positive or 0 0 Jerk (unit/s^3)

Output

Variable
Name Data Type Valid Range Initial Value Description

InVelocity

Function block

completed

state

BOOL TRUE, FALSE FALSE

The instruction speed

value is reached for the

first time

Busy
Function block

executing
BOOL TRUE, FALSE FALSE

TRUE: The function

block is being executed

FALSE: The function

block is not executed

Command

Aborted

Function block

aborted
BOOL TRUE, FALSE FALSE

TRUE: Aborted

FALSE: Not aborted

INVT Medium and Large-Scale PLC Programming Manual Pulse Output Instructions

202409 (V1.0) 279

Error
Function block

error flag
BOOL TRUE, FALSE FALSE

TRUE: An error occurs

FALSE: No error occurs

ErrorID Error ID
_eMc_Sys_Err

orID
-

_mcError_N

ULL
Error ID

Function description:

This function block is triggered at the rising edge of Execute to control the axis to run at a constant speed.

9.2.6 IMC_Home_P

Instruction format:

Instruction Name Graphical Representation ST Representation

IMC_Home_P Home

Associated variables:

Input

Variable
Name Data Type Valid Range

Initial

Value
Description

AxisID Axle number _eMc_Axis_ID 0–3 255 Axle number

Execute
Function block

enabling bit
BOOL TRUE, FALSE FALSE

Valid at the rising edge,

and invalid at the falling

edge

HomeSpeed Homing speed LREAL
Positive

number
15 Homing speed (unit/s)

Vmin1

Running speed

at the

deceleration

block

LREAL
Positive

number
3

Running speed at the

deceleration block

(unit/s)

Vmin2

Running speed

when waiting

for the Z signal

of motor

LREAL
Positive

number
1

Running speed when

waiting for the Z signal

of motor (unit/s)

HomeSignal Homing signal BOOL TRUE, FALSE FALSE Homing signal

Acceleration Acceleration LREAL
Positive

number
10 Acceleration (unit/s2)

Direction
Homing

direction
_eMc_Sys_Direction

_mcNegative,

_mcForward

_mcForw

ard

_mcNegative:

Backward running

_mcForward: Forward

running

Mode Homing mode _eMc_Home_Mode 1–9 2 Homing mode

INVT Medium and Large-Scale PLC Programming Manual Pulse Output Instructions

202409 (V1.0) 280

Input

Variable
Name Data Type Valid Range

Initial

Value
Description

ZMode

Z signal

acquisition

mode

BOOL TRUE, FALSE FALSE

FALSE: Z signal input

internally (motor)

TRUE: Z signal input

externally

ZSignal
External Z

signal
BOOL TRUE, FALSE FALSE

ZMode is valid when it

is TRUE, and the Z

signal is valid at the

rising edge of ZSignal

PHardLimit
Positive hard

limit signal
BOOL TRUE, FALSE FALSE

Positive hard limit

signal

NHardLimit
Negative hard

limit signal
BOOL TRUE, FALSE FALSE

Negative hard limit

signal

Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Done

Function block

completed

state

BOOL TRUE, FALSE FALSE

TRUE: Homing

completed

FALSE: Homing not

completed

Busy
Function block

executing
BOOL TRUE, FALSE FALSE

TRUE: The function

block is being executed

FALSE: The function

block is not executed

CommandA

borted

Function block

aborted
BOOL TRUE, FALSE FALSE

TRUE - Aborted

FALSE: Not aborted

Error
Function block

error flag
BOOL TRUE, FALSE FALSE

TRUE: An error occurs

FALSE: No error occurs

ErrorID Error ID _eMc_Sys_ErrorID -
_mcError

_NULL
Error ID

Function description: This function block is used to control the internal current axis to return to the home

position, with 9 homing modes.

Mode Timing Diagram Brief Description

Mode 1

Near-home switch pulse edge detection rear-end

reference + home switch (Z signal)

HomeSpeed

Vmin

Enter the

deceleration block

Leave the deceleration

block and acquire the

electronic Z signal

Speed

TimeVmin2

Obtain electronic Z signal

For example: The axis accelerates

to HomeSpeed → A signal that it

hits the deceleration block is given

→ The axis decelerates to Vmin →

The axis leaves the deceleration

block and the motor Z signal is

acquired → The axis decelerates

to 0 and then accelerates to Vmin2

reversely → The motor Z signal is

acquired → The homing operation

is completed

INVT Medium and Large-Scale PLC Programming Manual Pulse Output Instructions

202409 (V1.0) 281

Mode Timing Diagram Brief Description

Mode 2

Near-home switch pulse edge detection front-end

reference + home switch (Z signal)

Limit (-) switch
Near-home

switch
Limit (+) switch

Target speed

Target speed

Target speedTarget speed

Target speed

Homing DEC time

Homing DEC

time

Homing DEC

time

Homing DEC

time

Homing

direction

Home switch

Homing creep

speed

Homing creep

speed

Limit stop

DEC time

The starting point is on

the limit (-) switch

The starting point is

between the near-home

switch and the limit (-)

switch

The starting point is on

the near-home switch

The starting point is

between the near-home

switch and the limit (+)

switch (including on the

limit (+) switch)

After detecting the rising edge of the near-home switch, use the rising

edge of the original home switch as the home position.

Case 1: The axis hits the block

(near-home switch) at the target

speed (HomeSpeed) → The axis

runs reversely at 0 → The axis

leaves the block at the target

speed (HomeSpeed) → The axis

runs reversely at 0 → The axis hits

the block at Vim2 → The axis hits

the home switch (motor Z signal)

→ The homing operation is

completed

Mode 3

Near-home switch pulse edge detection front-end

reference

Limit (-) switch
Near-home

switch
Limit (+) switch

Target speed

Target speed

Target speedTarget speed

Target speed

Homing

DEC time

Homing

DEC time

Homing

DEC time

Homing

direction

Homing creep

speed
Limit stop

DEC time

The starting point is on

the limit (-) switch

The starting point is

between the near-home

switch and the limit (-)

switch

The starting point is on

the near-home switch

The starting point is

between the near-home

switch and the limit (+)

switch (including on the

limit (+) switch)

Detect the rising edge of the near-home

switch and use it as the home position.

Homing creep

speed

Homing creep

speed

Homing

DEC time
Homing creep

speed

Case 1: The axis hits the block

(near-home switch) at the target

speed (HomeSpeed) → The axis

runs reversely at 0 → The axis

leaves the block at the target

speed (HomeSpeed) → The axis

runs reversely at 0 → The axis hits

the block at Vim2 → The homing

operation is completed

Mode 4

Near-home switch pulse edge detection rear-end

reference + home switch (Z signal)

Limit (-) switch
Near-home

switch
Limit (+) switch

Target speed

Target speed

Target speed

Homing DEC

time

Homing DEC

time

Homing

direction

Homing creep

speed

Limit

stop

DEC

time

The starting point is on

the limit (-) switch

The starting point is

between the near-home

switch and the limit (-)

switch

The starting point is on

the near-home switch

The starting point is

between the near-home

switch and the limit (+)

switch (including on the

limit (+) switch)

After detecting the falling edge (backend) of the near-home switch, use the

rising edge of the original home switch in the homing direction as the home

position.

Homing creep

speed

Homing creep

speed

Homing

DEC time
Homing creep

speed

Home switch

Case 1: The axis hits the block

(near-home switch) at the target

speed (HomeSpeed) → The axis

hits the block at Vim2 → The axis

hits the home switch (motor Z

signal) → The homing operation is

completed

INVT Medium and Large-Scale PLC Programming Manual Pulse Output Instructions

202409 (V1.0) 282

Mode Timing Diagram Brief Description

Mode 5

Limit switch pulse edge detection + home switch (Z

signal)

Limit (-) switch Limit (+) switch

Target speed

Homing

direction

The starting point is

other than on the limit

(+) switch

After detecting the falling edge (backend) of the near-home switch, use the

rising edge of the original home switch in the homing direction as the home

position.

Homing creep

speed

Home switch

The starting point is on

the limit (+) switch

Homing creep

speed

Case 1: The axis hits the negative

limit reversely at the target speed

(HomeSpeed) → The axis runs

reversely at 0 → The axis runs

forward at Vim2 → The axis hits

the home switch (motor Z signal)

→ The homing operation is

completed

Mode 6

Limit switch pulse edge detection

Limit (-) switch Limit (+) switch

Target speed

Homing

direction

The starting point is other

than on the limit (+)

switch

After detecting the falling edge (backend) of the near-home switch, use the rising edge of the

original home switch in the homing direction as the home position.

Homing creep

speed

The starting point is on

the limit (+) switch

Homing creep

speed

Homing

DEC time

Target speed

Case 1: The axis runs at the target

speed (HomeSpeed) → The axis

hits the negative limit → The axis

runs reversely at 0 → The axis

leaves the negative limit at the

target speed (HomeSpeed) → The

axis runs reversely at 0 → The axis

hits the positive limit at Vim2 →

The homing operation is

completed

Mode 7

Home switch pulse edge detection

Homing

direction

Move in the homing direction from the current value, stop after detecting

the rising edge of the original home switch and use it as the home

position.

Homing creep

speed

Home switch

For example: The axis returns to

the home position in positive and

negative directions-20 → The axis

hits the home switch (motor Z

signal) → The homing operation is

completed

Mode 8

Near-home switch pulse edge detection rear-end

reference + home switch (Z signal)

Home proximity signal

External home input

Positive limit input

Negative limit input

Start from the negative

direction of the home

proximity signal

Start from the home

proximity signal ON

Start from the positive

direction of the home

proximity signal

End normally

End normally

End normally

Case 1: The axis returns to the

home position in positive and

negative directions → home signal

(deceleration block signal) → A

signal that the axis leaves the

home position at Vim2 is given

(deceleration block signal) → A

signal that the axis hits the

external home position (motor Z

signal) → The homing operation is

completed

INVT Medium and Large-Scale PLC Programming Manual Pulse Output Instructions

202409 (V1.0) 283

Mode Timing Diagram Brief Description

Mode 9

Near-home switch pulse edge detection back-end

reference

Home proximity signal

External home input

Positive limit input

Negative limit input

Start from the negative

direction of the home

proximity signal

Start from the home

proximity signal ON

Start from the positive

direction of the home

proximity signal

End normally

End normally

End normally

Case 1: The axis returns to the

home position in positive and

negative directions → Home

position signal (deceleration block

signal) → A signal that the axis

leaves the home position at Vim2

is given (deceleration block signal)

→ The homing operation is

completed

9.2.7 IMC_Halt_P

Instruction format:

Instruction Name Graphical Representation ST Representation

IMC_Halt_P
Single axis

stop

Associated variables:

Input Variable Name Data Type Valid Range
Initial

Value
Description

AxisID Axis ID _eMC_Axis_ID 0–3 255 Axle number

Execute
Function block

enabling bit
BOOL TRUE, FALSE FALSE

Valid at the rising edge,

and

invalid at the falling edge

Deceleration Deceleration LREAL
Positive

number
10 Deceleration (unit/s 2)

Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Done

Function block

completed

state

BOOL TRUE, FALSE FALSE

TRUE: The function block

has been executed,

FALSE: The function block

is not executed

Busy
Function block

executing
BOOL TRUE, FALSE FALSE

TRUE: The function block

is being executed

FALSE: The function block

is not executed

Error
Function block

error flag
BOOL TRUE, FALSE FALSE

TRUE: An error occurs,

FALSE: No error occurs

ErrorID Error ID
_eMc_Sys_Err

orID
-

mcError

NULL
Error ID

Function description: This function block is triggered at the rising edge of Execute. There is no need to reset

after the single axis stops since the single axis motion function block is triggered again and runs normally.

INVT Medium and Large-Scale PLC Programming Manual Pulse Output Instructions

202409 (V1.0) 284

9.2.8 IMC_Stop_P

Instruction format:

Instruction Name Graphical Representation ST Representation

IMC_Stop_P
Single axis

stop

Associated variables:

Input

Variable
Name Data Type Valid Range Initial Value Description

AxisID Axis ID _eMc_Axis_ID 0–3 255 Axle number

Execute
Function block

enabling bit
BOOL TRUE, FALSE FALSE

Valid at the rising edge,

and

invalid at the falling edge

Deceleration Deceleration LREAL
Positive

number
10 Deceleration (unit/s 2)

Mode Stop mode
_eMc_Sys_St

opMode

_mcDecStop,

_mcImmediate

lyStop

_mcDecStop

_mcDecStop: Deceleration

to stop

_mcImmediatelyStop:

Stop immediately

Output

Variable
Name Data Type Valid Range Initial Value Description

Done

Function block

completed

state

BOOL TRUE, FALSE FALSE

TRUE: The function block

has been executed,

FALSE: The function block

is not executed

Busy
Function block

executing
BOOL TRUE, FALSE FALSE

TRUE: The function block is

being executed

FALSE: The function block

is not executed

Error
Function block

error flag
BOOL TRUE, FALSE FALSE

TRUE: An error occurs

FALSE: No error occurs

ErrorID Error ID
_eMc_Sys

ErrorID
-

_mcError

NULL
Error ID

Function description: This function block is triggered at the rising edge of Execute. If the mode is set to

_mcDecStop, the axis state will be switched to Stopping after the axis stops. You need to set Execute to

FALSE to release the axis Stopping state. If the mode is set to _mcImmediatelyStop, the axis state will be

switched to Stopped after the axis stops. If the axis reports an error, you need to use the IMC_Reset function

block to reset and release it.

INVT Medium and Large-Scale PLC Programming Manual Pulse Output Instructions

202409 (V1.0) 285

9.2.9 IMC_Reset_P

Instruction format:

Instruction Name Graphical Representation ST Representation

IMC_Reset_P
Single

axis reset

Associated variables:

Input

Variable
Name Data Type Valid Range

Initial

Value
Description

AxisID Axis ID _eMc_Axis_ID 0–3 255 Axle number

Execute
Function block

enabling bit
BOOL

TRUE,

FALSE
FALSE

Valid at the rising edge,

and invalid at the falling

edge

Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Done

Function block

completed

state

BOOL
TRUE,

FALSE
FALSE

TRUE: The function block

has been executed

FALSE: The function

block is not executed

Busy
Function block

executing
BOOL

TRUE,

FALSE
FALSE

TRUE: The function block

is being executed

FALSE: The function

block is not executed

Error
Function block

error flag
BOOL

TRUE,

FALSE
FALSE

TRUE: An error occurs,

FALSE: No error occurs

ErrorID Error ID _eMc_Sys_ErrorID -
_mcError

NULL
Error ID

Function description: The rising edge of Execute triggers the axis to reset. Generally, the single axis reset

function block is required after the axis reaches the positive or negative limit or when an emergency stop

occurs on the axis.

9.2.10 IMC_SetOverride_P

Instruction format:

Instruction Name Graphical Representation ST Representation

IMC_SetOverride

_P

Single axis

speed

regulation

INVT Medium and Large-Scale PLC Programming Manual Pulse Output Instructions

202409 (V1.0) 286

Associated variables:

Input

Variable
Name Data Type Valid Range

Initial

Value
Description

AxisID Axis ID _eMc_Axis_ID 0–3 255 Axle number

Execute
Function block

enabling bit
BOOL TRUE, FALSE FALSE

Valid at the rising edge, and

invalid at the falling edge

VelFactor
Instruction

speed
LREAL

Positive

number
10

Instruction speed after

speed regulation (unit/s)

AccFactor
Acceleration

value
LREAL

Positive

number
10

Acceleration value after

speed regulation (unit/s2)

JerkFactor Jerk value LREAL Positive or 0 0
Jerk value after speed

regulation (unit/s 3)

Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Done

Function block

completed

state

BOOL TRUE, FALSE FALSE

TRUE: Speed regulation has

been completed,

FALSE: Speed regulation is

not completed

Busy
Function block

executing
BOOL TRUE, FALSE FALSE

TRUE: The function block is

being executed

FALSE: The function block is

not executed

Error
Function block

error flag
BOOL TRUE, FALSE FALSE

TRUE: An error occurs

FALSE: No error occurs

ErrorID Error ID _eMc_Sys_ErrorID -
_mcError

_NULL
Error ID

Function description: This function block is triggered at the rising edge of Execute to adjust the motion

parameters (speed, acceleration, acceleration change time, etc.) to the values set by users.

9.2.11 IMC_MoveSuperImposed_P

Instruction format:

Instruction Name Graphical Representation ST Representation

IMC_MoveSuperI

mposed_P

Single

axis

position

superposi

tion

Associated variables:

Input

Variable
Name Data Type Valid Range

Initial

Value
Description

AxisID Axis ID _eMc_Axis_ID 0–3 255 Axle number

INVT Medium and Large-Scale PLC Programming Manual Pulse Output Instructions

202409 (V1.0) 287

Execute
Function block

enabling bit
BOOL TRUE, FALSE FALSE

Valid at the rising edge,

and

invalid at the falling edge

Position
Compensation

distance
LREAL ≥-10,≤10 0.2

Superimposed

compensation distance

(unit)

Velocity Running speed LREAL ＞0,≤5 2 Speed (unit/s)

Acceleration Acceleration LREAL
Positive

number
10 Acceleration (unit/s2)

Output

Variable
Name Data Type Valid Range

Initial

Value
Description

Done

Function block

completed

state

BOOL TRUE, FALSE FALSE

TRUE: The function block

has been executed

FALSE: The function block

is not executed

Busy
Function block

executing
BOOL TRUE, FALSE FALSE

TRUE: The function block

is being executed

FALSE: The function block

is not executed

CommandAb

orted

Function block

aborted
BOOL TRUE, FALSE FALSE

TRUE: Aborted,

FALSE: Not aborted

Error
Function block

error flag
BOOL TRUE, FALSE FALSE

TRUE: An error occurs,

FALSE: No error occurs

ErrorID Error ID _eMc_Sys_ErrorID -
_mcError

_NULL
Error ID

Function description: The single axis position superposition function superimposes a track on the current

axis track, and only supports the position superposition of single axis absolute motion, single axis relative

motion, electronic cam, flying shear, and tracking shear function blocks.

9.2.12 IMC_ReadCmdSpeed_P

Instruction format:

Instruction Name Graphical Representation ST Representation

IMC_ReadCmdSpeed_P

Single

axis

instructi

on

speed

reading

Associated variables:

Input

Variable
Name Data Type Valid Range

Initial

Value
Description

AxisID Axis ID _eMc_Axis_ID 0–3 255 Axle number

Enable
Function block

enabling bit
BOOL

TRUE,

FALSE
FALSE

Valid if it is TRUE, and

invalid if it is FALSE

Output

Variable
Name Data Type Valid Range

Initial

Value
Description

INVT Medium and Large-Scale PLC Programming Manual Pulse Output Instructions

202409 (V1.0) 288

Busy
Function block

executing
BOOL

TRUE,

FALSE
FALSE

TRUE - The function block

is being executed

FALSE - The function block

is not executed

Error
Function block

error flag
BOOL

TRUE,

FALSE
FALSE

TRUE: An error occurs

FALSE: No error occurs

ErrorID Error ID _eMc_Sys_ErrorID -
mcError

NULL
Error ID

ActiveSpeed Speed LREAL Positive or 0 0
Actual speed of the axis

(unit/s)

Function description: This instruction is used to read the speed of the specified single axis, and ActiveSpeed

returns the actual speed of the axis.

Note: Single axis speed reading cannot be called in multi-axis running mode.

INVT Medium and Large-Scale PLC Programming Manual Fault Codes

202409 (V1.0) 289

10 Fault Codes

10.1 SMC_ERROR Fault Codes (General Error Information for 402 Axis)

Error

Number
Module ENUM Variable Description

0 All function blocks SMC_NO_ERROR No error

1 DriveInterface
SMC_DI_GENERAL_COMMUNI

CATION_ERROR

Communication error. For

example, sercos ring has

broken

2 DriveInterface SMC_DI_AXIS_ERROR Axis error

10 DriveInterface
SMC_DI_SWLIMITS_EXCEEDE

D

Position output within the

allowed range (SWLimit)

11 DriveInterface
SMC_DI_HWLIMITS_EXCEEDE

D
Hard limit switch is active

13 DriveInterface
SMC_DI_HALT_OR_QUICKSTO

P_NOT_SUPPORTED

Drive status Halt or Quickstop

is not supported

14 DriveInterface SMC_DI_VOLTAGE_DISABLED The drive is not enabled

15 DriveInterface
SMC_DI_IRREGULAR_ACTPOSI

TION

Current position given from

the drive seems to be

irregular. Check the

communication.

16 DriveInterface SMC_DI_POSITIONLAGERROR

Position lag error. Difference

between set and current

position exceeds the given

limit

20
All motion generating

function blocks

SMC_REGULATOR_OR_START

_NOT_SET

The controller is not enabled

or the brake is applied

21
Axis in wrong controller

mode

SMC_WRONG_CONTROLLER_

MODE

The axis is under wrong

controller mode

30 DriveInterface
SMC_FB_WASNT_CALLED_DU

RING_MOTION

The module created by

motion control is not called

before the motion is

completed

31 All function blocks SMC_AXIS_IS_NO_AXIS_REF
The given AXIS_REF variable is

not of the type AXIS_REF

32
Axis in wrong controller

mode

SMC_AXIS_REF_CHANGED_D

URING_OPERATION

AXIS_REF variables have been

changed while the modules

being activated

33 DriveInterface
SMC_FB_ACTIVE_AXIS_DIABL

ED

The axis is not activated while

moving

(MC_Power.bRegulatorOn)

34
All motion generating

function blocks

SMC_AXIS_NOT_READY_FOR_

MOTION

Axis in its current state cannot

execute a motion instruction

40 VirtualDrive
SMC_VD_MAX_VELOCITY_EXC

EEDED

Maximum velocity

(fMaxVelocity) exceeded

INVT Medium and Large-Scale PLC Programming Manual Fault Codes

202409 (V1.0) 290

Error

Number
Module ENUM Variable Description

41 VirtualDrive
SMC_VD_MAX_ACCELERATION

_EXCEEDED

Maximum acceleration

(fMaxAcceleration) exceeded

42 VirtualDrive
SMC_VD_MAX_DECELERATIO

N_EXCEEDED

Maximum deceleration

(fMaxDeceleration) exceeded

50 SMC_Homing
SMC_3SH_INVALID_VELACC_V

ALUES

Invalid velocity or

acceleration values

51 SMC_Homing
SMC_3SH_MODE_NEEDS_HW

LIMIT

Mode requests use of limit

switches for safety reasons

70 SMC_SetControllerMode SMC_SCM_NOT_SUPPORTED Mode not supported

71 SMC_SetControllerMode
SMC_SCM_AXIS_IN_WRONG_

STATE

The controller mode cannot

be changed in the current

state

75 SMC_SetTorque
SMC_ST_WRONG_CONTROLL

ER_MODE

The axis is under the wrong

controller mode

80 SMC_ResetAxisGroup
SMC_RAG_ERROR_DURING_S

TARTUP

Error occurs when the axis

group is activated

90 SMC_ChangeGearingRatio SMC_CGR_ZERO_VALUES Invalid values

91 SMC_ChangeGearingRatio SMC_CGR_DRIVE_POWERED

The gear ratio parameters of

the drive cannot be modified

when it is under control

92 SMC_ChangeGearingRatio
SMC_CGR_INVALID_POSPERI

OD
Invalid position period (<=0)

110 MC_Power SMC_P_FTASKCYCLE_EMPTY

Axis contains no information

in the scan cycle

(fTaskCycle=0)

120 MC_Reset
SMC_R_NO_ERROR_TO_RESE

T
Axis reset without error

121 MC_Reset
SMC_R_DRIVE_DOESNT_ANS

WER

Axis does not perform

error-reset

122 MC_Reset
SMC_R_ERROR_NOT_RESETT

ABLE
Error could not be reset

123 MC_Reset
SMC_R_DRIVE_DOESNT_ANS

WER_IN_TIME

Communication with the axis

did not work

130
MC_ReadParameter,

MC_ReadBoolParameter
SMC_RP_PARAM_UNKNOWN Parameter number unknown

131
MC_ReadParameter,

MC_ReadBoolParameter

SMC_RP_REQUESTING_ERRO

R

Error during parameter

transmission to the drive. See

error number in function

block instance

ReadDriveParameter

(SM_DriveBasic.lib)

140
MC_WriteParameter,

MC_WriteBoolParameter
SMC_WP_PARAM_INVALID

Parameter number unknown

or writing not allowed

141
MC_WriteParameter,

MC_WriteBoolParameter
SMC_WP_SENDING_ERROR

See error number in function

block instance

WriteDriveParameter

(Drive_Basic.lib)

INVT Medium and Large-Scale PLC Programming Manual Fault Codes

202409 (V1.0) 291

Error

Number
Module ENUM Variable Description

170 MC_Home
SMC_H_AXIS_WASNT_STAND

STILL

Axis has not been in standstill

state

171 MC_Home
SMC_H_AXIS_DIDNT_START_

HOMING
Error at start of homing action

172 MC_Home SMC_H_AXIS_DIDNT_ANSWER Communication error

173 MC_Home
SMC_H_ERROR_WHEN_STOP

PING

Error at stop after homing.

Check whether deceleration is

set

180 MC_Stop
SMC_MS_UNKNOWN_STOPPI

NG_ERROR
Unknown error at stop

181 MC_Stop
SMC_MS_INVALID_ACCDEC_V

ALUES

Invalid velocity or

acceleration values

182 MC_Stop
SMC_MS_DIRECTION_NOT_AP

PLICABLE

Direction=shortest not

applicable

183 MC_Stop
SMC_MS_AXIS_IN_ERRORSTO

P

Drive is in errorstop status.

Stop cannot be executed

184 MC_Stop
SMC_BLOCKING_MC_STOP_W

ASNT_CALLED

Instance of MC_Stop blocking

the axis by Execute=TRUE has

not been called yet. Please

call MC_Stop

(Execute=FALSE).

201 MC_MoveAbsolute
SMC_MA_INVALID_VELACC_VA

LUES

Invalid velocity or

acceleration values

202 MC_MoveAbsolute SMC_MA_INVALID_DIRECTION Direction error

226 MC_MoveRelative
SMC_MR_INVALID_VELACC_V

ALUES

Invalid velocity or

acceleration values

227 MC_MoveRelative SMC_MR_INVALID_DIRECTION Direction error

251 MC_MoveAdditive
SMC_MAD_INVALID_VELACC_

VALUES

Invalid velocity or

acceleration values

252 MC_MoveAdditive
SMC_MAD_INVALID_DIRECTIO

N
Direction error

276 MC_MoveSuperImposed
SMC_MSI_INVALID_VELACC_V

ALUES

Invalid velocity or

acceleration values

277 MC_MoveSuperImposed
SMC_MSI_INVALID_DIRECTIO

N
Direction error

301 MC_MoveVelocity
SMC_MV_INVALID_ACCDEC_V

ALUES

Invalid velocity or

acceleration values

302 MC_MoveVelocity
SMC_MV_DIRECTION_NOT_AP

PLICABLE

Direction=shortest/fastest not

applicable

325 MC_PositionProfile SMC_PP_ARRAYSIZE Erroneous array size

326 MC_PositionProfile SMC_PP_STEP0MS Step time = t#0s

350 MC_VelocityProfile SMC_VP_ARRAYSIZE Erroneous array size

351 MC_VelocityProfile SMC_VP_STEP0MS Step time = t#0s

375 MC_AccelerationProfile SMC_AP_ARRAYSIZE Erroneous array size

376 MC_AccelerationProfile SMC_AP_STEP0MS Step time = t#0s

400 MC_TouchProbe SMC_TP_TRIGGEROCCUPIED Trigger already active

INVT Medium and Large-Scale PLC Programming Manual Fault Codes

202409 (V1.0) 292

Error

Number
Module ENUM Variable Description

401 MC_TouchProbe
SMC_TP_COULDNT_SET_WIN

DOW

Drive interface does not

support the window function

402 MC_TouchProbe SMC_TP_COMM_ERROR Communication error

410 MC_AbortTrigger
SMC_AT_TRIGGERNOTOCCUP

IED
Trigger already de-allocated

426
SMC_MoveContinuousRelati

ve

SMC_MCR_INVALID_VELACC_

VALUES

Invalid velocity or

acceleration values

427
SMC_MoveContinuousRelati

ve

SMC_MCR_INVALID_DIRECTIO

N
Direction error

451
SMC_MoveContinuousAbsol

ute

SMC_MCA_INVALID_VELACC_

VALUES

Invalid velocity or

acceleration values

452
SMC_MoveContinuousAbsol

ute

SMC_MCA_INVALID_DIRECTIO

N
Direction error

453
SMC_MoveContinuousAbsol

ute

SMC_MCA_DIRECTION_NOT_

APPLICABLE

Direction=fastest not

applicable

600 SMC_CamRegister
SMC_CR_NO_TAPPETS_IN_CA

M

Cam does not contain any

tappets

601 SMC_CamRegister
SMC_CR_TOO_MANY_TAPPET

S

Tappet group ID exceeds

MAX_NUM_TAPPETS

602 SMC_CamRegister
SMC_CR_MORE_THAN_32_AC

CESSES

More than 32 accesses in one

CAM_REF

625 MC_CamIN SMC_CI_NO_CAM_SELECTED No cam selected

626 MC_CamIN
SMC_CI_MASTER_OUT_OF_S

CALE
Master axis out of valid range

627 MC_CamIN
SMC_CI_RAMPIN_NEEDS_VEL

ACC_VALUES

Velocity and acceleration

values must be specified for

ramp_in function

628 MC_CamIN
SMC_CI_SCALING_INCORREC

T

Scaling variables

fEditor/TableMasterMin/Max

are not correct

640
SMC_CAMBounds,

SMC_CamBounds_Pos
SMC_CB_NOT_IMPLEMENTED

Function block for the given

cam format is not

implemented

675 MC_GearIn SMC_GI_RATIO_DENOM RatioDenominator=0

676 MC_GearIn SMC_GI_INVALID_ACC Acceleration invalid

677 MC_GearIn SMC_GI_INVALID_DEC Deceleration invalid

725 MC_Phase
SMC_PH_INVALID_VELACCDE

C

Velocity and

acceleration/deceleration

values invalid

726 MC_Phase
SMC_PH_ROTARYAXIS_PERIO

D0

Rotation axis with

fPositionPeriod = 0

750
All modules using

MC_CAM_REF as input
SMC_NO_CAM_REF_TYPE

Type of given cam is not

MC_CAM_REF.

751 MC_CamTableSelect
SMC_CAM_TABLE_DOES_NOT

_COVER_MASTER_SCALE

Master axis area (xStart and

xEnd) from CamTable is not

covered by curve data

INVT Medium and Large-Scale PLC Programming Manual Fault Codes

202409 (V1.0) 293

Error

Number
Module ENUM Variable Description

775 MC_GearInPos
SMC_GIP_MASTER_DIRECTIO

N_CHANGE

During coupling of slave axis,

master axis has changed

direction of rotation

800
SMC_BacklashCompensatio

n
SMC_BC_BL_TOO_BIG

Gear backlash fBacklash too

large (> position periode/2)

1000
CNC function blocks which

are supervising the licensing
SMC_NO_LICENSE Target is not licensed for CNC

1001 SMC_Interpolator SMC_INT_VEL_ZERO
Path cannot be processed

because set velocity = 0

1002 SMC_Interpolator SMC_INT_NO_STOP_AT_END
Last object of path has

Vel_End>0

1003 SMC_Interpolator SMC_INT_DATA_UNDERRUN

Warning: GEOINFO-List

processed in DataIn but end

of list not reached. Reason:

EndOfList of the queue in

DataIn not be set or

SMC_Interpolator faster than

path generating function

blocks

1004 SMC_Interpolator
SMC_INT_VEL_NONZERO_AT_

STOP
Velocity at Stop > 0

1005 SMC_Interpolator
SMC_INT_TOO_MANY_RECUR

SIONS

Too many SMC_Interpolator

recursions. SoftMotion error.

1006 SMC_Interpolator
SMC_INT_NO_CHECKVELOCIT

IES

Input-OutQueueDataIn is not

the last processed function

block of SMC_CHeckVelocities

1007 SMC_Interpolator SMC_INT_PATH_EXCEEDED Internal or numeric error

1008 SMC_Interpolator
SMC_INT_VEL_ACC_DEC_ZER

O

Velocity and acceleration /

deceleration is null or too low

1009 SMC_Interpolator SMC_INT_DWIPOTIME_ZERO FB called with dwIpoTime = 0

1050 SMC_Interpolator2Dir
SMC_INT2DIR_BUFFER_TOO_

SMALL
Data buffer too small

1051 SMC_Interpolator2Dir
SMC_INT2DIR_PATH_FITS_NO

T_IN_QUEUE

Path does not go completely

in queue

1100 SMC_CheckVelocities
SMC_CV_ACC_DEC_VEL_NON

POSITIVE

Velocity and

acceleration/deceleration

values non-positive

1120 SMC_Controlaxisbypos
SMC_CA_INVALID_ACCDEC_V

ALUES

Values of fGapVelocity /

fGapAcceleration /

fGapDeceleration

non-positive

1200 SMC_NCDecoder SMC_DEC_ACC_TOO_LITTLE
Acceleration value not

allowed

1201 SMC_NCDecoder SMC_DEC_RET_TOO_LITTLE
Deceleration value not

allowed

1202 SMC_NCDecoder
SMC_DEC_OUTQUEUE_RAN_E

MPTY

Data underrun. Queue has

been read and is empty.

INVT Medium and Large-Scale PLC Programming Manual Fault Codes

202409 (V1.0) 294

Error

Number
Module ENUM Variable Description

1203 SMC_NCDecoder
SMC_DEC_JUMP_TO_UNKNO

WN_LINE

Jump to line cannot be

executed because line

number is unknown

1204 SMC_NCDecoder SMC_DEC_INVALID_SYNTAX Syntax invalid

1205 SMC_NCDecoder
SMC_DEC_3DMODE_OBJECT_

NOT_SUPPORTED

Objects are not supported in

3D mode

1300 SMC_GCodeViewer
SMC_GCV_BUFFER_TOO_SMA

LL
Buffer too small

1301 SMC_GCodeViewer
SMC_GCV_BUFFER_WRONG_T

YPE

Buffer elements have wrong

types

1302 SMC_GCodeViewer
SMC_GCV_UNKNOWN_IPO_LI

NE

Current line of the

Interpolator could not be

found

1500
All function blocks using

SMC_CNC_REF
SMC_NO_CNC_REF_TYPE

Given CNC program is not of

the type SMC_CNC_REF

1501
All function blocks using

SMC_OUTQUEUE
SMC_NO_OUTQUEUE_TYPE

Given OutQueue is not of the

type SMC_OUTQUEUE

1600 CNC function blocks
SMC_3D_MODE_NOT_SUPPO

RTED

Function block only works

with 2D paths

2000 SMC_ReadNCFile
SMC_RNCF_FILE_DOESNT_EX

IST
File does not exist

2001 SMC_ReadNCFile SMC_RNCF_NO_BUFFER No buffer allocated

2002 SMC_ReadNCFile
SMC_RNCF_BUFFER_TOO_SM

ALL
Buffer too small

2003 SMC_ReadNCFile
SMC_RNCF_DATA_UNDERRU

N

Data underrun. Buffer has

been read and is empty

2004 SMC_ReadNCFile
SMC_RNCF_VAR_COULDNT_B

E_REPLACED

Placeholder variable could

not be replaced

2005 SMC_ReadNCFile SMC_RNCF_NOT_VARLIST
Input pvl does not point to a

SMC_VARLIST object

2050 SMC_ReadNCQueue
SMC_RNCQ_FILE_DOESNT_EX

IST
File could not be opened

2051 SMC_ReadNCQueue SMC_RNCQ_NO_BUFFER No buffer defined

2052 SMC_ReadNCQueue
SMC_RNCQ_BUFFER_TOO_S

MALL
Buffer too small

2053 SMC_ReadNCQueue
SMC_RNCQ_UNEXPECTED_EO

F
Unexpected end of file

2100 SMC_AxisDiagnosticLog
SMC_ADL_FILE_CANNOT_BE_

OPENED
File could not be opened

2101 SMC_AxisDiagnosticLog SMC_ADL_BUFFER_OVERRUN

Buffer overrun. WriteToFile

must be called more

frequently

2200 SMC_ReadCAM
SMC_RCAM_FILE_DOESNT_EX

IST
File could not be opened

2201 SMC_ReadCAM
SMC_RCAM_TOO_MUCH_DAT

A
Saved cam too big

2202 SMC_ReadCAM
SMC_RCAM_WRONG_COMPIL

E_TYPE
Wrong compilation mode

INVT Medium and Large-Scale PLC Programming Manual Fault Codes

202409 (V1.0) 295

Error

Number
Module ENUM Variable Description

2203 SMC_ReadCAM
SMC_RCAM_WRONG_VERSIO

N
Wrong file version

2204 SMC_ReadCAM
SMC_RCAM_UNEXPECTED_EO

F
Unexpected end of file

3001
SMC_WriteDriveParamsToFil

e

SMC_WDPF_CHANNEL_OCCU

PIED
File channel occupied

3002
SMC_WriteDriveParamsToFil

e

SMC_WDPF_CANNOT_CREATE

_FILE
File could not be created

3003
SMC_WriteDriveParamsToFil

e

SMC_WDPF_ERROR_WHEN_R

EADING_PARAMS

Error at reading the

parameters

3004
SMC_WriteDriveParamsToFil

e

SMC_WDPF_TIMEOUT_PREPA

RING_LIST

Timeout during preparing the

parameter list

5000 SMC_Encoder SMC_ENC_DENOM_ZERO

Nominator of the conversion

factor

dwRatioTechUnitsDenom of

the Encoder reference is 0

5001 SMC_Encoder
SMC_ENC_AXISUSEDBYOTHE

RFB

Other module trying to

process motion on the

Encoder axis

5002 DriveInterface
SMC_ENC_FILTER_DEPTH_IN

VALID
Filter depth invalid

10.2 PLC Error Code Table (for TM and TP series PLCs)

Error Type Error Location

Major

Error

Code

Sub-error

Code
Error Description

CPU

System-relat

ed
Hardware error 0001

0001
Button cell not installed or battery

voltage too low

0002
Device supply voltage too low (less than

19V)

System

component-r

elated

Clock system

component error
0008

0001 Error in setting time

0002 Error in writing RTC clock

0003 Error in reading RTC clock

IP system

component error
0009

0001 IP segments of IP1 and IP2 repeated

XXX Reserved

0011 Read: IP1 module - Error in opening files

0012
Read: IP1 module - Unable to get IP

information

0013
Write: IP1 module - IP address

configuration error

0014
Write: IP1 module - Mask configuration

error

0015
Write: IP1 module -Gateway

configuration error

0016
Write: IP1 module - Repeated segments

with USB

0017
Write: IP1 module - IP and gateway in

different segments

XXX Reserved

INVT Medium and Large-Scale PLC Programming Manual Fault Codes

202409 (V1.0) 296

Error Type Error Location

Major

Error

Code

Sub-error

Code
Error Description

0021 Read: IP2 module - Error in opening files

0022
Read: IP2 module - Unable to get IP

information

0023 Write: IP2 module - IP address error

0024 Write: IP2 module - Mask error

0025 Write: IP2 module - Gateway error

0026
Write: IP2 module - Repeated segments

with USB

0027
Write: IP2 module - IP and gateway in

different segments

Backp

lane

bus

Backplane

bus-related

CPU IO error 0030
0001 Module configuration error

0002 Module parameter configuration error

Digital quantity

error
0031

0001 DI - Module configuration error

0002
DI - Module parameter configuration

error

XXX Reserved

2001 DO - Module configuration error

2002
DO - Module parameter configuration

error

2003
DO - Module output port power supply

failure

2004 DO - Module output error

XXX Reserved

XXX Reserved

Analog quantity

error
0032

0001 Module configuration error

XXX Reserved

0012
AD - Channel 0 parameter configuration

error

0015 AD- Channel 0 signal source open circuit

0016
AD - Channel 0 sampling signal

over-limit

0017
AD - Channel 0 sampling signal

above-upper-limit

0018
AD - Channel 0 sampling signal

below-lower-limit

XXX Reserved

0022
AD - Channel 1 parameter configuration

error

0025 AD- Channel 1 signal source open circuit

0026
AD - Channel 1 sampling signal

over-limit

0027
AD - Channel 1 sampling signal

above-upper-limit

0028
AD - Channel 1 sampling signal

below-lower-limit

XXX Reserved

0032
AD - Channel 2 parameter configuration

error

0035 AD- Channel 2 signal source open circuit

INVT Medium and Large-Scale PLC Programming Manual Fault Codes

202409 (V1.0) 297

Error Type Error Location

Major

Error

Code

Sub-error

Code
Error Description

0036
AD - Channel 2 sampling signal

over-limit

0037
AD - Channel 2 sampling signal

above-upper-limit

0038
AD - Channel 2 sampling signal

below-lower-limit

XXX Reserved

0042
AD - Channel 3 parameter configuration

error

0045 AD- Channel 3 signal source open circuit

0046
AD - Channel 3 sampling signal

over-limit

0047
AD - Channel 3 sampling signal

above-upper-limit

0048
AD - Channel 3 sampling signal

below-lower-limit

XXX Reserved

0003
Module output port power supply

failure

XXX Reserved

2012
Channel 0 parameter configuration

error

2014 Channel 0 output error

XXX Reserved

2022
Channel 1 parameter configuration

error

2024 Channel 1 output error

XXX Reserved

2032
Channel 2 parameter configuration

error

2034 Channel 2 output error

XXX Reserved

2042
Channel 3 parameter configuration

error

2044 Channel 3 output error

XXX Reserved

Temperature

measuring

module error

0033

0001 Module configuration error

XXX Reserved

0012
Channel 0 parameter configuration

error

0015 Channel 0 signal source open-circuit

0017
Channel 0 sampling signal

above-upper-limit

0018
Channel 0 sampling signal

below-lower-limit

XXX Reserved

0022
Channel 1 parameter configuration

error

0025 Channel 1 signal source open-circuit

INVT Medium and Large-Scale PLC Programming Manual Fault Codes

202409 (V1.0) 298

Error Type Error Location

Major

Error

Code

Sub-error

Code
Error Description

0027
Channel 1 sampling signal

above-upper-limit

0028
Channel 1 sampling signal

below-lower-limit

XXX Reserved

0032
Channel 2 parameter configuration

error

0035 Channel 2 signal source open-circuit

0037
Channel 2 sampling signal

above-upper-limit

0038
Channel 2 sampling signal

below-lower-limit

XXX Reserved

0042
Channel 3 parameter configuration

error

0045 Channel 3 signal source open-circuit

0047
Channel 3 sampling signal

above-upper-limit

0048
Channel 3 sampling signal

below-lower-limit

Fieldb

us

Modbus-relat

ed

Modbus_RTU

Master1
0040

0001 Illegal function code

0002 Illegal address

0003 Wrong number of data

0004 Slave device failure

0005

Communication timeout. An error

occurs since the communication time

exceeds the maximum communication

time set by the user

XXX Reserved

0008
Received data frame non-conforming to

the Modbus protocol

0009 CRC/LRC check error

XXX Reserved

000B

The length of received data does not

conform to the protocol or the number

exceeds the maximum limit specified by

the function code

000C
The received slave address does not

match the requested slave address

000D
The received function code does not

match the requested function code

000E Instruction execution failed

Modbus_RTU

Master2
0041

0001 Illegal function code

0002 Illegal address

0003 Wrong number of data

0004 Slave device failure

0005

Communication timeout. An error

occurs since the communication time

exceeds the maximum communication

time set by the user

INVT Medium and Large-Scale PLC Programming Manual Fault Codes

202409 (V1.0) 299

Error Type Error Location

Major

Error

Code

Sub-error

Code
Error Description

XXX Reserved

0008
Received data frame non-conforming to

the Modbus protocol

0009 CRC/LRC check error

XXX Reserved

000B

The length of received data does not

conform to the protocol or the number

exceeds the maximum limit specified by

the function code

000C
The received slave address does not

match the requested slave address

000D
The received function code does not

match the requested function code

000E Instruction execution failed

Modbus_RTU

Slave1
0042

0001 Illegal function code

0002 Illegal address

0003 Wrong number of data

0004 Slave device failure

0005

Communication timeout. An error

occurs since the communication time

exceeds the maximum communication

time set by the user

XXX Reserved

0008
Received data frame non-conforming to

the Modbus protocol

0009 CRC/LRC check error

XXX Reserved

000B

The length of received data does not

conform to the protocol or the number

exceeds the maximum limit specified by

the function code

000C
The received slave address does not

match the requested slave address

000D
The received function code does not

match the requested function code

000E Instruction execution failed

Modbus_RTU

Slave2
0043

0001 Illegal function code

0002 Illegal address

0003 Wrong number of data

0004 Slave device failure

0005

Communication timeout. An error

occurs since the communication time

exceeds the maximum communication

time set by the user

XXX Reserved

0008
Received data frame non-conforming to

the Modbus protocol

0009 CRC/LRC check error

XXX Reserved

INVT Medium and Large-Scale PLC Programming Manual Fault Codes

202409 (V1.0) 300

Error Type Error Location

Major

Error

Code

Sub-error

Code
Error Description

000B

The length of received data does not

conform to the protocol or the number

exceeds the maximum limit specified by

the function code

000C
The received slave address does not

match the requested slave address

000D
The received function code does not

match the requested function code

000E Instruction execution failed

ModbusTCP

Master1

00A0

0001 Illegal function code

0002 Illegal address

0003 Wrong number of data

0004 Slave device failure

0005

Communication timeout. An error

occurs since the communication time

exceeds the maximum communication

time set by the user

XXX Reserved

0008
Received data frame non-conforming to

the Modbus protocol

0009 CRC/LRC check error

XXX Reserved

000B

The length of received data does not

conform to the protocol or the number

exceeds the maximum limit specified by

the function code

000C
The received slave address does not

match the requested slave address

000D
The received function code does not

match the requested function code

ModbusTCP-

related

000E Instruction execution failed

ModbusTCP

Master2
00A1

0001 Illegal function code

0002 Illegal address

0003 Wrong number of data

0004 Slave device failure

0005

Communication timeout. An error

occurs since the communication time

exceeds the maximum communication

time set by the user

XXX Reserved

0008
Received data frame non-conforming to

the Modbus protocol

0009 CRC/LRC check error

XXX Reserved

000B

The length of received data does not

conform to the protocol or the number

exceeds the maximum limit specified by

the function code

000C
The received slave address does not

match the requested slave address

INVT Medium and Large-Scale PLC Programming Manual Fault Codes

202409 (V1.0) 301

Error Type Error Location

Major

Error

Code

Sub-error

Code
Error Description

000D
The received function code does not

match the requested function code

000E Instruction execution failed

ModbusTCP

Slave1
00A2

0001 Illegal function code

0002 Illegal address

0003 Wrong number of data

0004 Slave device failure

0005

Communication timeout. An error

occurs since the communication time

exceeds the maximum communication

time set by the user

XXX Reserved

0008
Received data frame non-conforming to

the Modbus protocol

0009 CRC/LRC check error

XXX Reserved

000B

The length of received data does not

conform to the protocol or the number

exceeds the maximum limit specified by

the function code

000C
The received slave address does not

match the requested slave address

000D
The received function code does not

match the requested function code

000E Instruction execution failed

ModbusTCP

Slave2
00A3

0001 Illegal function code

0002 Illegal address

0003 Wrong number of data

0004 Slave device failure

0005

Communication timeout. An error

occurs since the communication time

exceeds the maximum communication

time set by the user

XXX Reserved

0008
Received data frame non-conforming to

the Modbus protocol

0009 CRC/LRC check error

XXX Reserved

000B

The length of received data does not

conform to the protocol or the number

exceeds the maximum limit specified by

the function code

000C
The received slave address does not

match the requested slave address

000D
The received function code does not

match the requested function code

000E Instruction execution failed

� � � � � - � � � � �

	Preface
	Overview
	Target Audience
	Online Support
	Revision History

	Contents
	1 Program Structure and Execution
	1.1 Program Structure
	1.2 Task
	1.3 Program Execution Process
	1.4 Task Execution Type
	1.5 Task Priority
	1.6 Running of Multiple Subprograms
	1.7 Single Axis Control
	1.7.1 Programming Instructions for Single Axis Control
	1.7.2 Commonly Used MC Function Blocks for Single Axis Control

	1.8 Cam Synchronization Control
	1.8.1 Cyclic Mode of the Cam Table
	1.8.2 Input Method of the Cam Table
	1.8.3 Data Structure of the Cam Table
	1.8.4 Reference and Switching of Cam Tables

	1.9 Programming Suggestions

	2 EtherCAT Operation Mechanism
	2.1 EtherCAT Operation Principle
	2.1.1 Introduction to the EtherCAT Protocol
	2.1.2 Working Counter (WKC)
	2.1.3 Addressing Mode
	2.1.3.1 Segment Addressing
	2.1.3.2 Device Addressing
	2.1.3.3 Logical Addressing

	2.1.4 Distributed Clock
	2.1.4.1 Distributed Clock Concept
	2.1.4.2 Clock Synchronization Process

	2.2 EtherCAT Communication Mode
	2.2.1 Cyclic Process Data Communication
	2.2.1.1 Slave Device Synchronization Mode
	2.2.1.2 Master Device Synchronization Mode

	2.2.2 Acyclic Mailbox Data Communication

	2.3 EtherCAT State Machine
	2.4 EtherCAT Servo Drive Control Application Protocol
	2.4.1 EtherCAT-based CAN Application Protocol (CoE)
	2.4.1.1 CoE Object Dictionary
	2.4.1.2 CoE Cyclic Process Data Communication (PDO)
	2.4.1.3 CoE Acyclic Process Data Communication (SDO)

	2.4.2 Servo Drive Profiles According to IEC 61800-7-204 (SERCOS)
	2.4.2.1 SoE State Machine
	2.4.2.2 IDN Inheritance
	2.4.2.3 SoE Cyclic Process Data
	2.4.2.4 SoE Acyclic Service Channel

	3 Axis State Mechanism
	3.1 Axis State Transition

	4 Basics of Programming
	4.1 Variable
	4.1.1 Variable Declaration
	4.1.2 Data Type
	4.1.2.1 Boolean
	4.1.2.2 Integer
	4.1.2.3 Real Number
	4.1.2.4 String
	4.1.2.5 Time Data

	4.1.3 Variable Type
	4.1.4 Persistent Variable

	5 Programming Language
	5.1 Overview
	5.2 Structured Text (ST)
	5.2.1 Introduction to the Structured Text Programming Language
	5.2.2 Program Execution Sequence
	5.2.3 Expression Execution Sequence
	5.2.4 Instruction Statement
	5.2.5 Application Examples

	5.3 Ladder Diagram (LD) and Function Block (FBD）
	5.3.1 Introduction to Ladder Diagram and Function Block Diagram Programming Languages
	5.3.2 Program Execution Sequence
	5.3.3 Execution Control
	5.3.4 Link Element
	5.3.4.1 Line Element
	5.3.4.2 Rung
	5.3.4.3 Label
	5.3.4.4 Contact
	5.3.4.5 Coil
	5.3.4.6 Function and Function Block Calls
	5.3.4.7 Assignment
	5.3.4.8 Jump Execution

	5.3.5 Application Examples

	5.4 Instruction List (IL)
	5.4.1 Introduction to the Instruction List Programming Language
	5.4.2 Link Element
	5.4.2.1 Operand
	5.4.2.2 Instruction
	5.4.2.3 Operator
	5.4.2.4 Modifier

	5.4.3 Operation Instructions
	5.4.3.1 Data Access Instructions
	5.4.3.2 Output Instructions
	5.4.3.3 Set and Reset Instructions
	5.4.3.4 Logical Operation Instructions
	5.4.3.5 Arithmetic Operation Instructions
	5.4.3.6 Comparison Operation Instructions
	5.4.3.7 Jump and Return Instructions
	5.4.3.8 Call Instructions
	5.4.3.9 Parentheses Instructions

	5.4.4 Function and Function Block
	5.4.4.1 Function Call
	5.4.4.2 Function Block Call

	5.4.5 Application Examples

	5.5 Sequential Function Chart (SFC)
	5.5.1 Introduction to the Sequential Function Chart Programming Language
	5.5.2 SFC Structure
	5.5.2.1 Step
	5.5.2.2 Action
	5.5.2.3 Transition
	5.5.2.4 Jump
	5.5.2.5 Macro

	5.6 Continuous Function Chart (CFC)
	5.6.1 Continuous Function Chart Programming Language Structure
	5.6.1.1 Introduction
	5.6.1.2 Execution Sequence

	5.6.2 Link Element
	5.6.2.1 Pointer
	5.6.2.2 Input and Output
	5.6.2.3 Block
	5.6.2.4 Jump and Label
	5.6.2.5 Return
	5.6.2.6 Composer
	5.6.2.7 Selector
	5.6.2.8 Comment
	5.6.2.9 Input and Output Pins

	5.6.3 CFC Configuration

	6 Basic Instructions
	6.1 Comparison Instructions
	6.1.1 Greater Than (GT)
	6.1.2 Less Than (LT)
	6.1.3 Greater Than Or Equal To (GE)
	6.1.4 Less Than Or Equal To (LE)
	6.1.5 Equal To (EQ)
	6.1.6 Not Equal To (NE)

	6.2 Selection Instructions
	6.2.1 Binary Selection (SEL)
	6.2.2 Multiplexer (MUX)
	6.2.3 Maximum (MAX)
	6.2.4 Minimum (MIN)
	6.2.5 Limit (LIMIT)

	6.3 Counter Instructions
	6.3.1 Counter Up (CTU)
	6.3.2 Count Down (CTD)
	6.3.3 Counter Up/Down (CTUD)

	6.4 Timer Instructions
	6.4.1 Pulse Timer (TP)
	6.4.2 On-delay Timer (TON)
	6.4.3 Off-delay Timer (TOF)
	6.4.4 Real-time Clock (RTC)

	6.5 Bit and Word Logic Instructions
	6.5.1 AND Instruction
	6.5.2 OR Instruction
	6.5.3 NOT Instruction
	6.5.4 XOR Instruction
	6.5.5 Set Dominant (SR)
	6.5.6 Reset Dominant (RS)
	6.5.7 Rising Edge Detector (R_TRIG)
	6.5.8 Falling Edge Detector (F_TRIG)

	6.6 Bit/Byte Functions
	6.6.1 EXTRACT
	6.6.2 PACK
	6.6.3 PUTBIT
	6.6.4 UNPACK

	6.7 Bit Shift Instructions
	6.7.1 Bitwise Left-shift (SHL)
	6.7.2 Bitwise Right-shift (SHR)
	6.7.3 Bitwise Left-rotation (ROL)
	6.7.4 Bitwise Right-rotation (ROR)

	6.8 Data Type Conversion Instructions
	6.8.1 BOOL_TO_<TYPE>
	6.8.2 BYTE_TO_<TYPE>
	6.8.3 WORD_TO_<TYPE>
	6.8.4 DWORD_TO_<TYPE>
	6.8.5 INT_TO_<TYPE>
	6.8.6 SINT_TO_<TYPE>
	6.8.7 DINT_TO_<TYPE>
	6.8.8 UDINT_TO_<TYPE>
	6.8.9 REAL_TO_<TYPE>
	6.8.10 STRING_TO_<TYPE>
	6.8.11 TIME_TO_<TYPE>
	6.8.12 TOD_TO_<TYPE>
	6.8.13 DATE_TO_<TYPE>
	6.8.14 DT_TO_<TYPE>

	6.9 Data Processing Instructions
	6.9.1 MOVE
	6.9.2 HEXinASCII_TO_BYTE
	6.9.3 BYTE_TO_HEXinASCII
	6.9.4 WORD_AS_STRING

	6.10 Arithmetic Instructions
	6.10.1 ADD
	6.10.2 SUB
	6.10.3 MUL
	6.10.4 DIV
	6.10.5 MOD
	6.10.6 ABS
	6.10.7 SQRT
	6.10.8 LN
	6.10.9 LOG
	6.10.10 EXP
	6.10.11 EXPT
	6.10.12 SIN
	6.10.13 COS
	6.10.14 TAN
	6.10.15 ASIN
	6.10.16 ACOS
	6.10.17 ATAN
	6.10.18 RAD/DEG
	6.10.19 SIZEOF

	6.11 Date and Time Instructions
	6.11.1 SetDateAndTime
	6.11.2 GetDateAndTime

	6.12 String Function Instructions
	6.12.1 LEN
	6.12.2 LEFT
	6.12.3 RIGHT
	6.12.4 MID
	6.12.5 CONCAT
	6.12.6 INSERT
	6.12.7 DELETE
	6.12.8 REPLACE
	6.12.9 FIND

	6.13 Address Operation Instructions
	6.13.1 ADR/^
	6.13.2 BITADR

	6.14 File Operation Instructions
	6.14.1 Overview
	6.14.2 Input and Output
	6.14.3 Load Files (files_load)
	6.14.4 Copy Files (Files_Copy)
	6.14.5 Delete Files (Delete_File)
	6.14.6 Write Files (Write_File)

	6.15 Regulators
	6.15.1 PD
	6.15.2 PID
	6.15.3 PID_FIXCYCLE

	6.16 BCD Conversion Instructions
	6.16.1 BCD_TO_INT
	6.16.2 INT_TO_BCD

	6.17 System Instructions
	6.17.1 PLC Fault Diagnosis Instructions
	6.17.1.1 CPU_ERR_DIAGNOSE
	6.17.1.2 MODBUS_RTU_MASTER_DIAGNOSE
	6.17.1.3 MODBUS_RTU_SLAVE_DIAGNOSE
	6.17.1.4 MODBUS_TCP_MASTER_DIAGNOSE
	6.17.1.5 MODBUS_TCP_SLAVE_DIAGNOSE

	6.17.2 IP and Time Instructions of the TM Controller
	6.17.2.1 IP_Mod (only applicable to the TM series PLC)
	6.17.2.2 RTC_Mod (only applicable to the TM series PLC)

	6.17.3 IP and Time Instructions of the TP Controller
	6.17.3.1 RTC_Mod (only applicable to the TP series PLC)
	6.17.3.2 Sys_NetworkConfig (only applicable to the TP series PLC)
	6.17.3.3 Sys_NetworkInfo (only applicable to the TP series PLC)

	6.18 Signal Generator
	6.18.1 BLINK
	6.18.2 FREQ_MEASURE
	6.18.3 GEN

	6.19 Auxiliary Mathematical Function Blocks
	6.19.1 DERIVATIVE
	6.19.2 INTEGRAL
	6.19.3 LIN_TRAFO
	6.19.4 STATISTICS_INT
	6.19.5 STATISTICS_REAL
	6.19.6 VARIANCE

	6.20 Operation Function Blocks
	6.20.1 CHARCURVE
	6.20.2 RAMP_INT
	6.20.3 RAMP_REAL

	6.21 Analog Value Processing
	6.21.1 HYSTERESIS
	6.21.2 LIMITALARM

	7 Motion Control Instructions
	7.1 Single Axis Instructions
	7.1.1 MC_Power
	7.1.2 MC_Halt
	7.1.3 MC_Home
	7.1.4 MC_MoveAbsolute
	7.1.5 MC_AccelerationProfile
	7.1.6 MC_MoveAdditive
	7.1.7 MC_MoveRelative
	7.1.8 MC_MoveSuperImposed
	7.1.9 MC_MoveVelocity
	7.1.10 MC_PositionProfile
	7.1.11 MC_ReadActualPosition
	7.1.12 MC_ReadBoolParameter
	7.1.13 MC_ReadAxisError
	7.1.14 MC_ReadStatus
	7.1.15 MC_ReadParameter
	7.1.16 MC_Reset
	7.1.17 MC_Stop
	7.1.18 MC_VelocityProfile
	7.1.19 MC_WriteBoolParameter
	7.1.20 MC_WriteParameter
	7.1.21 MC_AbortTrigger
	7.1.22 MC_ReadActualTorque
	7.1.23 MC_ReadActualVelocity
	7.1.24 MC_SetPosition
	7.1.25 MC_TouchProbe
	7.1.26 MC_MoveContinuousAbsolute
	7.1.27 MC_MoveContinuousRelative
	7.1.28 MC_Jog
	7.1.29 MC_Inch
	7.1.30 SMC3_PersistPosition
	7.1.31 SMC3_PersistPositionSingleturn
	7.1.32 SMC3_PersistPositionLogical
	7.1.33 SMC_Homing
	7.1.34 SMC_SetControllerMode
	7.1.35 SMC_SetTorque

	7.2 Master-slave Axis Instructions
	7.2.1 MC_CamIn
	7.2.2 MC_Camout
	7.2.3 MC_CamTableSelect
	7.2.4 MC_GearIn
	7.2.5 MC_GearOut
	7.2.6 MC_GearInPos
	7.2.7 MC_Phasing

	8 Communication Instructions
	8.1 Serial Freeport Instructions
	8.1.1 Instruction List
	8.1.2 ICP_Serial_Comm_hCom
	8.1.3 ICP_Serial_Comm_Read
	8.1.4 ICP_Serial_Comm_Write

	8.2 TCP Freeport Communication Instructions
	8.2.1 Instruction List
	8.2.2 ICP_TCP_Comm_Client
	8.2.3 ICP_TCP_Comm_Write
	8.2.4 ICP_TCP_Comm_Read
	8.2.5 ICP_TCP_Comm_Server
	8.2.6 ICP_TCP_Comm_Connect

	8.3 UDP Freeport Communication Instructions
	8.3.1 Instruction List
	8.3.2 ICP_UDP_Comm_Send
	8.3.3 ICP_UDP_Comm_Receive

	9 Pulse Output Instructions
	9.1 Auxiliary Instructions
	9.1.1 IMC_GetSys_P
	9.1.2 IMC_Axis_P
	9.1.3 IMC_Power_P
	9.1.4 IMC_SetPosition_P
	9.1.5 IMC_ReadCmdPosition_P
	9.1.6 IMC_ReadParameter_P
	9.1.7 IMC_ReadStatus_P
	9.1.8 IMC_SendData_P
	9.1.9 IMC_Acc2Jerk_P
	9.1.10 IMC_AccTime2Jerk_P

	9.2 Single Axis Instructions
	9.2.1 IMC_Jog_P
	9.2.2 IMC_Inch_P
	9.2.3 IMC_MoveAbsolute_P
	9.2.4 IMC_MoveRelative_P
	9.2.5 IMC_MoveVelocity_P
	9.2.6 IMC_Home_P
	9.2.7 IMC_Halt_P
	9.2.8 IMC_Stop_P
	9.2.9 IMC_Reset_P
	9.2.10 IMC_SetOverride_P
	9.2.11 IMC_MoveSuperImposed_P
	9.2.12 IMC_ReadCmdSpeed_P

	10 Fault Codes
	10.1 SMC_ERROR Fault Codes (General Error Information for 402 Axis)
	10.2 PLC Error Code Table (for TM and TP series PLCs)

