INvt

AX Series
Programmable Controller
Software Manual

o B

8
: ’ﬂ
- g
 Bg
- g
.u gg

W
W
[
e
L o
e
W'
&
W

SHENZHEN INVT ELECTRIC CO., LTD.

AX series programmable controller software manual

Change History

No.

Change description

Version

Release date

First release

V1.0

September 2020

1. Modified the variables PLC and ErrorID to
setError and getError in Table 4-1.

2. Updated the remarks of inTime and inDate in
Table 4-1 and Table 4-2.

3. Updated the variable definition table in A.1.1.1,
Al21,andA2.1.1.

V11

June 2021

1. Added a Table 3-2 "Example of bit, byte, word,
and double word correspondence of AX series
controllers" and updated the data in Table 3-1
and Table 3-3.

2. Updated the section 5.2, changing the "error
code" to "fault code".

3. Added the description of PC communication
configuration for Windows10 when the hardware
is connected with Mini USB cable in section 2.3.

V1.2

November 2021

1. Added Figure 2-28, Figure 2-29, and updated
related descriptions in section 2.6.2.

2. Added section 4.2.1.1 "P-type model port
configuration description” and section 4.2.1.2
"N-type model port configuration description".

3. Added Figure 4-7, Figure 4-8, and Figure 4-9,
and updated related descriptions in sections 4.4
and 4.5.

4. Deleted section 4.5.3 "Temperature module"”
and Appendix A "Function module command".

5. Added section 4.7 "Distributed 1/O module",
section A.3 "Controller and DA200 Series Servo
CANopen Configuration Example™" and Appendix
B "SMC_ERROR description".

V1.3

August 2022

1. Added Appendix A Function module
command.

V14

January 2023

AX series programmable controller software manual Preface

Preface

Thank you for using the AX series programmable controller (programmable controller for short).

This manual contains the information required to use the AX series programmable controllers. Please read this manual
carefully before using the product. Then you can fully understand the functions, performance, and system build-up, which
helps to give full play to the advanced performance.

Target audience

Personnel with electrical professional knowledge (such as qualified electrical engineers or personnel with equivalent
knowledge)

Applicable product

AX70 programmable controller
AX71 programmable controller
AX72 programmable controller
AX series programmable controller backplane expansion modules

AX series programmable controller bus expansion modules

Online support

You can also obtain product documentation and technical support from INVT website:

http://www.invt.com

If the product is ultimately used for military affairs or weapon manufacture, abide by the export control regulations in the
Foreign Trade Law of the People's Republic of China and complete related formalities.

The manual is subject to change without prior notice.

http://www.invt.com/solutions/

AX series programmable controller software manual Contents

Contents

[=] = o] = TP PURTRTROE i
QI U0 = A= 10 o 1= ot S SPPR RPN i
PN o] o] ITor=T o] (= o] o T U Tox APPSR PPT SRR i
(O 10110 T= ST o] o Lo]« SO O P T PO PSP PPRRPT PSRN i
(06T 0] (=T o] £ J TP TP T PO P OO PP ETOT PP U PPO PP PUPPPPPRON ii
o To [U ol N fo o [0 Tod A To] o BN PR PP PPPPRRPPN 1
1.1 AX series programmable CONTIOIIETooo e et e ettt e e e e e e sttt e e e e e e anebeeeeeaeeeaannes 1

1.1.1 Overview

1.1.2 Product configuration and module description
1.1.3 System apPliCALION PIOCESSeeeiiiiriieiiieie it e et e sttt e e sttt e s s et e s s ne e e e et et e sse et e s snne e e e anbre e e nanneeeennnneeas 2
1.2 Programming platform
1.2.1 Invtmatic Studio

1.2.2 Software programming iNTEIMACEcocuiiiiiiiie et e et re e e s e e s 2

1.3 PLCOPEN SPECITICALIONiiiiiiiii e ettt e ettt e e e e e et e e e e e s s et b eaeeeeee s e e satbaeeeeeeeesatbaeseeeesssansasnseeaeesannnns 3

A €T] Lo IS =T g (=T E O R PP PTPPRRPPN 4

2.1 Software installation and UNINSTAIALIONoviiiiiii e snre e e s e e 4
b I Yo 11V L (=N o) =11 11 o [O P PUPR PP 4
2.1.2 Software inStallation FEQUIFEIMENTSco ittt e e e e e et b bt e e e e e e e s bbb eeeeee e e aaanrbeeeaaaeas 4
b IS B o (=T o - 14 o o ORI 4
2.1.4 InStAlliNG the SOIWEAIEeeiiiiiiiiiiei e e et e e e s e et e e e e e e st b e e e e e e e e s satbeaeeeeeeesanssrraeeeaeeas 4
2.1.5 UNINStalliNng the SOMWATEcoieiieei ettt e ettt e e e e e e bbbt e e e e e e s bbbt e e e e e e e s annrbeeaeaeeas 8

2.2 AX series programmable CONtroller CONNECHIONcciiiiiiiiiieee it e e e e s s e e snre e e s e e e 8

2.3 PC communication CONFIQUIALIONuuiiiiiieeiiiiiiee e et e st e e e e et e e e e e e e et b e e e e e e e s satbanreeeeessasanaeeeeaeeas 8

A e (o] =Tol Aol (Y- 11T] IR
2.4.1 Starting the programming environment
2.4.2 Creating NEW PIOJECTeeeiiieiieiitiee i ittiee ettt e e stteee sttt e e s astaeeesbeeee s aabeeeaantbeeeanbeeeeambeeeeanbbeeesanbeeeesnbeeeesnbneeennn

2.5 Typical StePS Of PrOJECT WITLING ..eeeiiiiiiiiiie ettt ettt e e e e e ettt et e e e e e s a bbb et e e e e e s s annbbe e e e e e e s eannrneeeeaeeas

2.6 Examples of program writing and deDUGQINGveeiiiiiiieii e
b Yo [0 [g To T e Lo o T PSPPSRI
2.6.2 Writing @ function t0 handle POU ...t e e e e e e e e e anrneeaaaeeas 20
2.6.3 SEtting MOLOr PAFAMELETSeiiieeiieiitiee ettt e st e e et et e s s e e r e e e e b et e e sre e e e ssne e e e e s reeenanreeeennnneeeannneeenans 22
2.6.4 Writing MOtOr POSILIVE @NA TEVEISEeeiiiuiiiieiiiiee i eiteee e ettt sttt ettt e e e bt e e s abee e e ssbe e e e abbeeesanbeeeesnbaeeeantbeeenans 23
A RSN o] 1l o] T lo WUTT=T g o] foTo | £= 10 DR PRI 24
2.6.6 RUNNING MONITOT PrOGIGIMeiiiiiitiie ittt e ettt e et e e s e e st e e et et e e s re e e e asn e e e e et e e e nanreeeennnneeeanneeenans 25

R N (= VLo 1 4 S O] oY i To LU T = L] o] o (PSPPSR 26

0 Y oo 10 L= 1 T OO T TSSO P O PP PP PP OPPPPROPRN 26
I 0V o To [o TF R O I - L (= P PO O PP OTPRPTPPRR 26
3.1.2 ModbusTCP_Slave

1A T To o1 11 o 1 TP F PR PUPR T
3.2.1 MOODUSRTU_ MBSeeiiitiiieiie ettt e ettt e ekt e e e e okt e e e s bt e e e n et e e nen et e e abre e e s nre e e e nnnneeeanneeenans 27
3.2.2 MOADUSRTU _SIAVEuiiiiiiieiiiiieit et s et e e e e e st e e e e e s et e e e e e e e s saatb e e e e eaeesaaasbebaeeaeeesensntaaeeaaeeas 27

3.3 EtherCAT master node...

I O N\ (o] o= o PP PT PP
3.4.1 CANopen master NOde CONTIGUIALIONueiiieiiiiiiiii e e et e e e e e e e e e s inneeeeaaeeas 30
3.4.2 Parameter configuration of CANOPEN MASTETuuiiiiiiei et e e e e e e nnreeeeaaeeas 31

A MOAUIE CONFIGUIALION ...ttt et e bt e e e sttt e s bt e o4 kbt e e e aa b et e e sab b e e e ek e e e e aabe e e e snneeeeabneeenan 33

4.1 CPU MOAUIE.....cciiiiiiiiteie etttk s et st e ookt e e e s et e e s e e e e e akn e e e e et et e e s snn e e e st r e e e s anne e e e nannes 33

AX series programmable controller software manual Contents

4.2 HIgh-SPEEA /O MOAUIE ..ottt e ettt et e e e e ekt et e e e e e e e bb bbb et e e e e e e nnbb e et e e e e e e annebeeeas
4.2.1 Creating high-speed 1/0 module project
V020 1] o101 oTo) g i ¥ Ted 1 o g e [=FYod] o) i o o R UPRPRSP
4.2.3 Output port fUNCHION AESCHIPLIONuieiiiie ittt e e e e e e e e e bbb e e e e e e s e aanbbre e e e e e e e anenneeas 47
4.2.4 High-speed 1/0 Mapping tADIEcoiiiiiiiii e 50
4.2.5 INEITUPT INSITUCTION ..ottt e e e ettt e e e e e e sttt et e e e e e e tb e b e et e e e e sansatbeeeaeeeeeasstbaeeeaeeeesnsbanees 56
4.3 Digital iINPUL/OULPUL MOAUIE..........eeieiiiee et e et e e e e e skttt e e e e e s e bbbt e e e e e e e e aannbbeeeeaeeeeannebeeeas 63
4.3.1 Creating a project for digital input/output MOTUIE...........cocviiiiiiiiiii e 63
4.3.2 Variable definition QN0 USEccuiiiiiiiiiiii ettt ettt 63
4.4 Analog iNPUL/OULPUE MOAUIE..........eeeiiiee ettt e ettt e e e e e e st bte e e e e e e e e bbbbe et e e e e e aannbba et eaeeeeannnbeeeas 64
4.4.1 Creating a project for analog input/output MOTUIEccuiiiiiiiiiiiii e 64
4.4.2 Variable definition N0 USEcccuiiiiiiiiiiiiieie ettt ettt 65
4.5 TEMPEIALUIE MOAUIEeiiiiiiiiiitiee ettt ettt e e e oo a e ettt e e e e e o a bbb et e e e e e o a b bee e e e e e e e aabbbbeeeeaeeeannbbaeeeaeeeeannnbeeeas 66

4.5.1 Creating a project for temperature module

4.5.2 Variable definition and use

4.6 COMMUNICALION MOAUIE ...t e ettt e e e oottt e e e e e e st bttt e e e e e e e e bbbbe et e e e e e aannbbaeeeaeeeeannnbeeeas
4.6.1 DIigital INPUL MOGUIE ..ottt e e st e e rab e e st e e e et n e e e snne e e e nnbree s
4.6.2 Digital OULPUE MOTUIEoeeieiiie e e e et e e e s e et e e e e e e e e tbtb e e e e e e e s e satbaeeeaeeeasnsbanes
4.6.3 ANAlog INPUE MOAUIEottt e oottt e e e e e e e bbbt e e e e e e e e bbb be et e e e e s e annbbeeeeaeeeaannsbneeas 69
4.6.4 ANalog OULPUL MOGUIEceiiiiiii ettt e st e e st e e e skt e e et n e e e snne e e e nabree s 71
4.6.5 TEMPEIAtUIE MOUUIEiiiiiiii et e e e e e e e e e e et e e e e e e e s s e tb e e e e e e e e e satbtbeeeeeeesesastbaeeeaeesasnsbnnees 72

4.7 DIStribDUed 1/O MOAUIE....c ettt ettt e e e et b et e e e e e e e e bbbt e e e e e e e e e anabba e e e e e e e e annebeeeas 76
4.7.1 Creating a project for distributed /O MOAUIE..........iiiiiiiiiii e s 76

4.8 Priority setting of each module (recommended ValUE)eeiiiiiiiiiiiiiiiee e 78
T ST 1 To o]] 12T PURTPTPR 78
4.8.2 Configuring sub-device DUS CYCIE OPLIONScoiiiiiiiiiii e 79

N D=V (oL =3 DI F-To] (o F] £ PP

5.1 Fault indicator
5.1.1 System and bus fault indicator
5.1.2 High-speed iNPUt/OUtPUL INQICALIONcciiiiiiiiiiiie ittt s et e e et e e s enbe e e e snba e e e s eneeeenns
5.2 Digital tUD@ FAUIL COA...... e ettt e e e e ettt et e e e e e s bbb et e e e e e s s nnbbe e e e e e e e aanntneeeeaeeas
6 Controller Program Structure and Execution
oI R e (oo = 0 IR (U od (U] = PP PPPPPRPPRE
(S - T PR UPT TP
6.3 PrOGIAM ©XECULIONeeeieiaitit ettt e bt e ettt e e ettt e e bttt e e eab et e e 4a kbt e e ekt et e 4ok b et e e aab b et e e asbe e e e as b e e e e anbb e e e snnneeennnneeas
A - T oy ol N | o] 11 = SO PR R TTPRP
(SR = TS N o] (o] 1Y PT ORI 91
6.6 Operation of MUILIPIE SUDPIOGIAIMScitiiiiiiiiie ittt e et e s st e e s b e e e et e e nnnneeenannee s 94
7 EtherCAT BUS MOTION CONEIOL...cciiiiiiiiiiii ittt sttt et et e e ne et e e e ne e e nbeeeneeen 96
7.1 EtherCAT OPeration PrINCIPIEooo ittt e e e e ettt e e e e e s st b et e e e e e e s anbbbe e e e e e e s eaanrneeeeaeeas 96

7.1.1 Protocol introduction
7. 1.2 WOTK COUNEET WKC ...ttt ettt ettt s ket ookt e e e a bt e e e st et e e e hb et e e et be e e s nbe e e e snbeeeeatbeeenans
A RS I X (o [£ =Tt [To 4 T Lo [T PP UTT PRI
% 1] 01 Yo ol oY RSP ERTRPOP
7.1.5 EtherCAT cable redundancy
7.2 EtherCAT COMMUNICALION MIOTE....ttt ee ettt e e e ettt e e e e e ot bttt e e e e e s e e abbb e e e e e e s aasbbbeeeeeeeaansnnnneaaaaeas
7.2.1 Periodic process data COMMUNMICALIONuvieiieeiiiiiiiiiieeeeesiiieee e e e e e s st eeeeeessstbarreeaeessasssraereaeesassssneees 104
7.2.2 Non-periodic mailbox data COMMUNICALIONoiiiuiiiiiiie it e e e e s 107
7.3 EtherCAT State MACKINEo it e ettt e e e e e ettt e e e e e e e eaee e e e e e e e e e nnsbeeeeaeeeannnnneeaaaaeas 108
7.4 EtherCAT servo drive controller application ProtOCOL............iiiiiiiiiiiiiee et a e 110
7.4.1 EtherCAT-based CAN application protoCol (COE)ccoiiiiiiiiiiiiiiiiiie e 110

AX series programmable controller software manual Contents

7.4.2 Servo drive profile according to IEC 61800-7-204 (SERCOS)ccoiiiiiiiiiiiiieiiiiiieee e 115
8 Application Programming

S] [T | LT (oo 1 o PR EPRSRPPPR
8.1.1 Single axis control programming description
8.1.2 MC function blocks commonly used for single-axis CONtrol..............ccoiiiiiiiiiiiiiie e 120
8.2 Cam SYNCNIONIZALION CONIOL ... iiiiiiiiiiiiti et e et e e e e et e e e e e e st b et e e e e e s aastbtaaeeeeesaasaabaeeeeeeeansnnaaeeaeeeas 121
8.2.1 Periodic mode Of the CamM tabIe...........ooi e 122
8.2.2 Input Method Of CAM TADIEooiiiiii ettt s e as 123
8.2.3 Data Structure of Cam taDIE ..o 123
8.2.4 CAM table reference and SWILCHooi i e 124
Appendix A FUNCEION MOAUIE COMMANT ...coiiiiiiiiiiiie ittt e et e s e e e b e e e e bn e e sanne e e e nanree s 125
A.1 ModbUSRTU COMMANT IBFAIYeeiiiiiiiiiiiice e e e e e e e e e e e et e e e e e e e e s atb e e e e e e e e e anrseees 125
A.1.1 Definition and use of ModbusRTU master command library variablesccccccoeiiiiiis 125

A.1.2 Definition and use of ModbusRTU slave library variables
A.2 ModbusTCP command library

A.2.1 Definition and use of ModbusTCP master command library variablesccccociiiiiiiiins 129
A.2.2 Definition and use of ModbusTCP slave command library variablescccccovieiiiiiiiiincc e, 131
A.3 High-speed I/O lIBrary deSCrHPtION.c..uiiiiii e e e e e e e e e et e e e e e e s aatb e e e e e e e e e snsaeees 131
N 0 o 101) (=T o 1P 131
AB.2 LAtCRVAIUE_HP ...ttt et e e et e e s e e et e e e e s 143
A3 PrESetValUE _HP ...t e et e e e e e e et e e e e e e e e e e e e e e a b arra e e e e e aarrrares 145
A 3.4 PUISEWIAINMEASUIE HPoiiiiiiiiiiiiiiiiiiieieeeeeeeeeeee e eeeaeseeaeeseaesesesesssssssssssssssssssssssssssssssssssssnsssnsnsnnnnnnnnnns 148
A.3.5 SetComparelnterruptParam _HP ... 151
A.3.6 TIMINGSAMPIING _HP ... e e e e e e e e e e e e e st e e e e e e e s sratbaeeeaaesesasbaeees 153
A.3.7 ComPareSINGIEVAIUE _HP ... oo ettt e e e e e et b bt e e e e e e e anbbr e e e e e e e e anens 154
A.3.8 COMPArEMOTEVAIUE _HPottt e et e st e e et e e s e e e nannee s

YR N N 1= AV /=T £ [0 T | PP PRTPPPP
A.3.10 Zphase_Clearpulse_HP
A.3.11 Zphase_Compensate_HP

FaN o] X<l alo I o Q2 o (oY =Tt a1 1= = L o PSR OPPRPTI

B.1 Controller and Goodrive20 Series VFD Configuration EXamPpPlecooiuiiiiiiioiiiiiie e

B.2 Controller and DA200 Series Servo Drive Configuration Example

B.3 Controller and DA200 Series Servo CANopen Configuration EXample ... 174
Appendix C SMC_ERROR GESCIIPIION ..eiiiiiiiiiiiii ettt e e e e sttt e e e e e s e bbb e e e e e e e s e aanbbaeeeaeeeesnnebnneas 178

-iv-

AX series programmable controller software manual Product Introduction

1 Product Introduction

1.1 AX series programmable controller
1.1.1 Overview

The AX series programmable controller is a high-performance programmable controller designed with a modular structure
to provide users with intelligent automation solutions. It adopts IEC61131-3 programming language system and supports
six standard programming languages: IL, LD, FBD, ST, SFC, and CFC. High-level motion control functions such as
electronic cams, electronic gears, synchronous control, and positioning can be realized through EtherCAT bus. Supporting
200kHz high-speed I/0, the programmable controller can realize motion control functions such as linear interpolation and
circular interpolation.

The programmable controller is rack-mounted. Each rack can embrace 16 functional extension modules, including digital
input/output modules, analog input/output modules, temperature modules and communication modules. Remote 1/O
extension can be carried on via EtherCAT fieldbus.

In addition, programmable controller supports various communication interfaces such as EtherCAT, CANopen, RS485 and
Ethernet to meet the diverse application requirements of users.

1.1.2 Product configuration and module description

The AX series programmable controller CPU supports the following modules: power supply module, digital input module,
digital output module, analog input module, analog output module, temperature module and communication module. Take
AX70-C-1608P as an example, the diagram of system combination is as follows.

Digital output
CPU module Analog
module output
module
Power supply
module Temperature
module
I | =1 =1 B
[I\n - H
- e
{ ! Local
A p I [% o X16 Vo)
Y f LN J LN J
.ﬂ 3 % /
| U Ess
a) e L
|
. Analog input
Digital input module module
" X16 Remote
a eee oo 110
o -
] EtherCAT communication module
El
9
L3
o
bl e
3, Ho X16 Remote
- ["“ gg eee oo o
B

Figure 1-1 System integration

1-

AX series programmable controller software manual Product Introduction

1.1.3 System application process

-
Y * Install the power supply module, CPU module, and expansion modules.
J
Y
5 *Provide power and perform wiring for related modules.
J
N\
* Turn on the power only after confirming that the wiring of each module is correct
3 and the power supply voltage meets the specifications.
J
N\
. » Connect the computer that hosts Invtmatic Studio to the CPU module.
J
Y
*Download the program created on Invtmatic Studio and related parameters to the
5 CPU module.
J
Y
*Ensure that the nixie tube of the CPU module does not show any fault code and the
6 fault indicators of the CPU module and other modules do not turn on.
J

1.2 Programming platform
1.2.1 Invtmatic Studio

Invtmatic Studio is a programming platform developed by Shenzhen INVT Electric Co., Ltd. It fully supports the
IEC61131-3 programming language system and six standard programming languages: IL, LD, FBD, SFC, ST, and CFC.

1.2.2 Software programming interface

The interface of Invtmatic Studio software after creating an application project is shown in Figure 1-2.

Invt AX7X.project” - Invtmatic Studio - [m] *
File Edit View Project Build Online Debug Tools Window Help Menu bar Y
S==Hd & [R £+ 3" ¥ | Application [Device: PLC Logic] ~ ©F ® |HE 5
Devices ~ 1 X PLC_PRG X -
- & meax - 1| PROGRAM PLC_PRG
= [Device (T Ax7X) VAR 0

END VAR
= @ﬂ PLC Logic

Variable declaration area

=} Application
m Library Manager
PLC_PRG (PRG)
= @ Task Configuration
= g MainTask e 100 % | &)

1]
& e Program editing area

‘3 HIGH_PULSE_IO
‘3 SoftMotion General Axis Pool

Device tree bar

Messages - Total 0 error(s), 0 warning(s), 0 message(s) - B X
CANbus - | @ 0error(s) [® 0 warning(s) [@ 0 message(s) | X ¥
Description Project Object Position

Message area

IIEI Messages - Total 0 error(s), 0 warning(s), 0 nlessage(s}-]
Lastbuid: €3 0 % 0 Precompile & Project user: (nobody) %)

Figure 1-2 Invtmatic Studio software application engineering interface

AX series programmable controller software manual Product Introduction

1.3 PLCopen specification

Founded in 1992, PLCopen is a vendor- and product-independent worldwide association. One of the core activities of
PLCopen is focused around IEC 61131-3, the only global standard for industrial control programming. A standard
programming interface allows people with different backgrounds and skills to create different elements of a program
during different stages of the software lifecycle: specification, design, implementation, testing, installation and
maintenance. Yet all pieces adhere to a common structure and work together harmoniously. The standard includes the
definition of six programming languages: Continuous Function Chart (CFC), Sequential Function Chart (SFC), Instruction
List (IL), Ladder Diagram (LD), Function Block Diagram (FBD) and Structured Text (ST). Via decomposition into logical
elements, modularization, and modern software techniques, each program is structured, increasing its re-usability. For
programmers, the programming technology based on IEC61131-3 can be widely used in the entire industrial control field.

Invtmatic Studio programming platform used in AX series programmable controller fully supports the PLCopen
specification and allows users to reference many standard function libraries. The high-level language programming
approach makes it easy for controller manufacturers and users to develop their own proprietary function blocks and
instruction libraries and to borrow existing similar control programs to form industry-specific "process packages", which
can significantly improve user programming efficiency.

-3-

AX series programmable controller software manual Getting Started

2 Getting Started

2.1 Software installation and uninstallation
2.1.1 Software obtaining

INVT AX series programmable controller user programming software contains Invtmatic Studio platform, installation files
and related reference materials. You can get them by the following ways:

1. Visit INVT website (www.invt.com) and go to Support > Download > Software to download the software installation
package for free.

2. Obtain software installation CDs from all levels of INVISTA distributors.
2.1.2 Software installation requirements

You can install the software on a computer or desk:

3. Installed with Windows 7/ Windows 8/ Windows 10 operation system
4. CPU clock speed: 2GHz or higher

5. Memory: 2GB or higher

6. Available hardware space: 5GB or higher

2.1.3 Preparing

If it is the first time to install Invtmatic Studio, check whether your computer meets the software installation requirements. If
yes, you can install it directly.

If you want to install the latest version of Invtmatic Studio, check the version information about the installed software by
choosing Help > About. If it is not the latest version, you can upgrade the software using the online upgrade method.

About =X=)

=

Invtmatic Studio |

Invtmatic Studio v1.0.2 l

Copyright © 2002~2020 by INVT company. All rights reserved.

|
Close

Figure 2-1 Version information
2.1.4 Installing the software

1. Locate the installation file storage path, and double-click Invtmatic Studio Setup 64 Vx.x.x.exe. (take V1.0.2 as an
example)

2. The installation starts. See the following figure.

-4-

AX series programmable controller software manual Getting Started

Invtmatic Studio V1.0.2 - InstallShield Wizard

e

Sl Invimatic Studio V1.0.2 Setup is preparing the Installshield
BB Wizard, which will guide you through the program setup process.
Please wait.

Extracting: Invtmatic Studio Setup 64 V1.0, 2. msi

-—— |

Figure 2-2 Installation preparation

3. When the dialog box shown in the following figure appears, click Next.

™, Welcome to the InstallShield Wizard for
‘ N - Invtmatic Studio V1.0.2

The InstallShield(R) Wizard will install Invtmatic Studio V1.0.2
on your computer. To continue, dlick Next.

WARNING: This program is protected by copyright law and
international treaties.

| <Back |f_ Next> J [Cancel |

Figure 2-3 Installation wizard

4. Then the license agreement dialog box appears. Select | accept the terms in the license agreement, and then
click Next.

License Agreement

Please read the following license agreement carefully.

License Agreement
for the usage of a Invtmatic Studio Software or
Invtmatic Studio Software Package

General Terms of License (End User License Apreement) for the
supplied Software. Please read this Software User Agreement carefully
before using the supplied Software. Downloading or installation of the
Software constitutes recognition by the customer of the conditions of

this Agreement. hd

(@ I accept the terms in the license agreement

() I do not accept the terms in the license agreement

Instalshield

[<«Bak |[mext>= || cancal

Figure 2-4 License agreement

-5-

AX series programmable controller software manual Getting Started

5. Set the software installation path, and click Next.

Destination Folder
Click Mext to install to this folder, or dick Chanage to install to a different folder.

’ Install Invtmatic Studio V1.0.2 to:
C:\Program Files\Invtmatic Studio,

Installshield

| <Bak || Mext> || cancel

e ——
e ¥ =T =TT

Figure 2-5 Installation path

6. The installation component selection interface appears. Select an installation option. If you have no special
requirement, keep the default selection, and click Next.

Choose the setup type that best suits your needs.

Please select a setup type.

@ Complete
All program features will be installed. (Requires the most disk
space.)

Choose which program features you want installed and where they
will be installed. Recommended for advanced users.

InstallShield

<Back | MNext>

Figure 2-6 Installation type

7. When the following interface appears, click Install.

AX series programmable controller software manual Getting Started

Ready to Install the Program
The wizard is ready to begin installation.

Click Install to begin the installation.

If you want to review or change any of your installation settings, dick Back. Click Cancel to
exit the wizard.

Installshield

| <Back || Instal

Figure 2-7 Start installation

8. Aninstallation progress bar appears. Click Finish when the installation is completed.

Installing Invtmatic Studio V1.0.2

The program features you selected are being installed.

Please wait while the Installshield Wizard installs Invtmatic Studio V1.0.2.
This may take several minutes,

i

Status:

|. |
i

InstallShield

| <Bak || nMewt= |[_ canel |

Figure 2-8 Installation progress

-7-

AX series programmable controller software manual

Getting Started

Installing Invtmatic Studio V1.0.2

The program features you selected are being installed,

iy

This may take several minutes.

Status:

Please wait while the Installshield Wizard installs Invimatic Studio V1.0.2.

InstallShield

« Back

MNext =

Cancel

Figure 2-9 Installation complete

2.1.5 Uninstalling the software

Uninstall Invtmatic Studio by using the standard software uninstallation method of a Windows system. The procedure is as

follows:

Step 1 Shut down Invtmatic Studio running programs, including the backend running program.

Step 2 Enter the control panel, find and right-click Invtmatic Studio, and click Uninstall.

Step 3 Wait until the software is uninstalled.

2.2 AX series programmable controller connection

There are two types of hardware connections between an upper computer and programmable controller:

1. Using Mini USB cable

2. Using LAN network cable

T——
SESSSSEESESSENNERL| e - 2
Ii.ﬂg- [

i
i

°
oll

Figure 2-10 Hardware connection diagram

2.3 PC communication configuration

® If the hardware is connected with a LAN network cable, ensure that the IP address of the PC and the IP address of
the controller are in the same network segment. The factory default IP address of the AX series programmable
controller is 192.168.1.10, so the IP address of the PC should be set to 192.168.1.xxx. (xxx means any integer value

in the range of 1 - 254 except the end address of the controller IP).

-8-

AX series programmable controller software manual

Getting Started

U Local Area Connection 2 Properties

[—

Internet Protocol Version 4 (TCP/IPv4) Properties

(2 [

Metworking | Sharing

Connect using:

L¥ Intel(R) Ethemet Connection (4) 1215-LM

This connection uses the following items:

QVMware Bridge Protocal

Bl (305 Packet Scheduler

Q File and Printer Sharing for Microsoft Netwarks

Ll 2 T lopolody trecovery mapper 1/0 Driver
i |ink-Layer Topology Discovery Responder -
4 T |
Description

Transmission Control Protocol/Intemet Protocol. The default
wide area network protocol that provides communication
across diverse interconnected networks.

You can get IF settings assigned automatically if your network supports
this capability. Otherwise, you need to ask your network administrator
for the appropriate IP settings.

(7 Obtain an IP address automatically

(@) Use the following IP address:

IP address:

192 168 . 1 .20

Subnet mask: 255,255,255, 0

Default gateway:

Obtain DNS server address automatically
(@) Use the following DNS server addresses:

Preferred DNS server:

Alternate DNS server:

[validate settings upon exit

[ok |[Cance |

[QK

J ’ Cancel]

Figure 2-11 PC communication configuration for LAN network cable connection

When the PC runs Windows7:

< Install USB drive

If the hardware is connected with Mini USB cables, configure the PC as follows.

1) In Computer Management window, select Device Manager, right click the RNDIS/Ethernet Gadget device

and select Update driver.

4% Network adapters

£ Aventail VPN Adapter

£ Intel(R) Dual Band Wireless-AC 8265

¥ Intel(R) Ethernet Connection (4) 1219-LM

EF VMware Virtual Ethernet Adapter for VMnetl

£ VMware Virtual Ethernet Adapter for VMnetd
Other devices

& RNDIS/Ethernet Gadget |

m

¥
Update Driver Software...

Disable
Sensor /O devices

b -%| Sound, video and game
»-{M System devices

5 E Universal Serial Bus contr

Uninstall

Scan for hardware changes

Properties

[
27

Launches the Update Driver Software Wizard for the selected device,

Figure 2-12 RNDIS/Ethernet Gadget

2) Select Browse my computer for driver software > Let me pick from a list of device drivers on my
computer > Network adapter > Microsoft Corporation > Remote NDIS Compatible Device, and then

click Next.

AX series programmable controller software manual

Getting Started

@ |l Update Driver Software - RNDIS/Ethernet Gadget

Select Network Adapter

™ Click the Metwork Adapter that matches your hardware, then click OK. If you have an
a, installation disk for this feature, click Have Disk.

Manufacturer
Mirrnsnft

* || Metwerk Adapter:

Microsoft Corporation

Device

FMotorola, Inc.

L ME,
4 | 1

=) Pernote MDIS based Internet Sharin
-

|:| B4 Remote MDIS Compatible Device

| b

El This driver is digitally signed.

Tell me why driver signing is important I}

[Mext][Cancel]

Figure 2-13 Select driver software

3) After the installation, start the controller and connect it to the PC with a Mini USB cable. The USB driver is
displayed in the computer device manager.

%
A -

Monitors
Metwork adapters

LE
&
[
=4
[Wa
- 3

Aventail VPN Adapter

Intel(R) Dual Band Wireless-AC 8265

Inte ‘E Ethe;ﬂ&t.l:ﬂ.ﬂ.ﬂ.emﬂ.ﬂ_m_ﬂl. 9-LM

L

RMDIS/Ethernet Gadget #2

<~ Configure USB IP address

—a
-

10K A L W) P | o L
VIO I L aT T T e HUEPLEI L=

Vinetl

VMware Virtual Ethernet Adapter for ViMnetd
- J2' Ports (COM & LPT)
> ¥ Processors

- [Sensor /0 devices

Figure 2-14 Install the driver

1) Go to Control Panel > Network and Internet, right click Local Area Connection of RNDIS and select
Properties. In the Properties window, select Internet Protocol Version 4 (TCP/IPv4).

-10-

AX series programmable controller software manual Getting Started

= = - .]
e [,'5] Local Area Connection 4 Properties u
- Search Network Connections yel -
Networking | Sharing
= this connection » B~ O @
Connect using:

L—'. Local Area Connection 4

S Unidentified network B Disable “-1." RNDIS/Ethemet Gadget H2
- @ RMDIS/Ethernet Gadget £2 Sets

et ."' Wireless Metwork Connection Diagnose
Koo

-
o n Mot connected

o R Intel(R) Dual Band Wireless-AC ® Bridge Connections This connection uses the following items:
Create Shortcut g\-’l\-‘lware Bridge Protocol ~
Delete gOoS Packet Scheduler
B Rename gFile and Printer Sharing for Microsoft Networks
& |tamet Prot I\rminE{'FFDIDn}
&l‘ Prop\e; =
4 | 1] 3
Description

Transmission Control Protocol/Intemet Protocol. The default
wide area network protocol that provides communication
across diverse interconnected networks.

[ok |[Cancel

Figure 2-15 Select local area connection of RNDIS

2) Configure the IP address on network segment 192.168.2.xxx, in which xxx is within 1-254 (except 10). Click
OK to complete the IP address configuration.

Internet Protocol Version 4 (TCP/IPv4) Properties &Ig

General

‘fou can get IP settings assigned automatically if your network supports
this capability. Otherwise, you need to ask your network administrator
for the appropriate IP settings.

() Obtain an IP address automatically

(@) Use the following IP address:

IP address: 192 .188 . 2 . 100

Subnet mask: 255 . 255 .255 . 0| %
Default gateway:

Obtain DNS server address automatically
@) Use the following DNS server addresses:

Preferred DNS server:

Alternate DNS server:

[validate settings upon exit
[OK] [Cancel] !

Figure 2-16 IP address configuration

When the PC runs Windows10:

< Install the driver

kindle_rndis.inf_amd64 is the USB driver file.

1) Right-click the file “5-runasadmin_register-CA-cer.cmd” and select Run as administrator.

-11-

AX series programmable controller software manual Getting Started

nf_amdgd » rndis.inf_amdéd Print

-~ » R < administrat
Run as administrator
N Mame I -

1-Zip
CRC SHA
3 L{' Edit with Notepad++

] 1-create_CA.crmd

=] 2-make_pfx.cmd
| 3-build_cat.crnd

=| 4-sign_cat.cmd

~" Windchill {*
| %] 5-runasadmin_register-CA-cer.cmd | 3
7| kindle_rndis.inf 1 & Share
— kindle_rndisamdfd. cat 3 . : :
= MobileRead-CodeSigning- CA.cer § ' Scanwith OfficeScan

2) Press any key.

z-Ch, O=NobileRead Forums, OU=Narco77

11l 1y, .

‘rodis. inf amdfdirndis. inf amd

3) Connect the computer and the PLC with a USB cable, open Device Manager, and right-click the USB serial
device under the Ports node.

v RY Other devices

Ei PCl Device

o~ Ports (COM & LPT)

= |JSE B rrnkam

T Print qui

D Processc Dizable device

! Security Uninstall device

B* Software

! Software Scan for hardware changes

i Sound, .
. Properties

4) Click Browse my computer for drivers and select the driver folder.

B Update Drivers - USB BR{TI2%& (COMS)

How do you want to search for drivers?

—> Search automatically for drivers

Windows will search your computer for the best available driver and install it on
your device,

— Browse my computer for drivers
Locate and install a driver manually.

-12-

AX series programmable controller software manual

Getting Started

5) Wait for the installation process completed.

B Update Drivers - Kindle USE RNDIS Device (USBMetwork enabled)

Windows has successfully updated your drivers
Windows has finished installing the drivers for this device:

@I Kindle USE RMDIS Device (USEMetwork enabled)

The USB RNDIS item has been added to the Network Adapters node in Device Manager.

[Monitors
~v [Metwork adapters
' Intel(R) Ethernet Connection (8) 1219-V
I? Intel(R) Wireless-AC 9360 160MHz
I_I? Kindle USB RNDIS Device (USBNetwork enabled) |
F VirtualBox Host-Only Ethernet Adapter
I? WAN Miniport (IKEvZ)
I? WAN Miniport (IP)
I? WAN Miniport (IPvE)
I? WAN Miniport (L2TP)
I? WAN Miniport (Metwork Manitor)
I? WAN Miniport (PPPOE)
= WAN Miniport (PPTP)

<~ Configure USB network port

1) Right-click the Network menu and select Properties.

e b e T e e T R R LR e

o Local Disk (E:)
o Local Disk (F:)

#fﬂ#i"'

2) Click Change adapter settings.

Delete

W

¥ Network

Yk :EE » Control Panel » All Control Panel lterns » Metwork and Sharing Center

Contral Panel Home

View your active netwerks
Lhange adapter settings
Change adwvanced sharing invt.cn
settings Private network

Media streaming options

3) Right-click the Unidentified network with “USB RNDIS” in its name, and select Properties.

-13-

View your basic network information and set u

A

AX series programmable controller software manual Getting Started

.:_ LA 2
S RiHAIRIREE
W= Kindle USB RMDIS Device (USBMet.. G Disable
“ Status
Diagnose
®) Bridge Connections
Create Shortcut
G Delete
) Rename
) Properties

4) Select Internet Protocol Version 4 (TCP/IPv4) and click Configure....

Metworking Sharing

Connect using:

I? Kindle LUSB BENOIS Device (IUSBMNetwork enabled)

Corfigure...

This connection uses the following tems:

v T QoS #riEmitH b E A

A Intemet bR 4 (TCP/IPv4)
N oy hisd

. Microsoft LLOP thixSEZHIE e

o Intemet this ke 6 (TCP/IPvE)

o 3RS ERH MR INE AR

o HERE IR INALETEE /0 WRENAE R v

< >

5) Set the IP address manually. The IP address must be in the network segment 192.168.2.xxx, in which xxx is
within 1-254 (except 10).

Internet FHY RS 4 (TCP/IPv4) Properties >
General

‘You can get IP settings assigned automatically if your network supports
thiz capability. Otherwise, you need to ask your network administrator
for the appropriate IP settings.

() Obtain an IP address automatically
(@) Use the following IP address:

IP address: __H‘_-_-‘-'"" I 192 . 168 , 2 -IID |

Subnet mask: | 255 .255 .255 . 0 |

Default gateway: |192.188. 2 . 1 |

Obtain DMS server address automatically

(®) Use the following DNS server addresses:

Preferred DS server: | . . . |

Alternate DMNS server: | . . . |

-14-

AX series programmable controller software manual Getting Started

2.4 Project creation

2.4.1 Starting the programming environment

1. Take Invtmatic Studio V1.0.2 as an example. Double-click the software icon of Invtmatic Studio. The programming
environment is as follows:
B trvmatic Studio | . N R —— |

ERR R eI o e G e B Deb o T 2ol M Windcw I Hieip Y
W) g N[(=F=2=23 |o K| =2

BEE S oo b RBX(MGMAS N AN |B | @
Devices v 3 X] StartPage x| - ﬂ
[C:H i D. Intitled 'n] X X
Basic operations Latest news

E) New Project...

@ Open Project...] e
Open Project from PLC... I I\Vt *ﬁnﬁ BRERES : 002334

Recent projects

Close page after project load
Show page on startup

| Messages - Total 0 error(s), 0 warning(s), 0 message(s) SEETEY
- [© 0 error(s) [® 0 warning(s) [@ 0 message(s) | X ¥
Description Project Object Position
5 Devices | [Pous
Lastbuid: € 0 @ 0 Precompie \/ Project user: (nobody) (4]

Figure 2-17 Invtmatic Studio homepage

2. Inthe tool bar, select Tool > Device repository to add a device profile.
Invtmatic Studio - o X
File Edit View Project Build Online Debug {Tools | Window Help) Y

Bl & v o 2B X (MM @ Package Manager... h a X222 3 (o W

) Ubrary Repository...
£

License Manager.
i

License Repository...

Latest news

Scripting »
Customize...

Options...

Import and Export Options...

| Device Reader...

@ DT+ ohlf

@ Counter_HP

@ hsio_demo2000- MiZ
@ hsio_demo2000

@ PulsewidthMeasure_HP
@ hsio_demo2000

@ Bampleot

@ Parking

@ MaterialManagement

@ MaterialManTest

& FB_Tray

& FB_Relative_INVT

“WERE"ZEH

[Close page after project load 4 & 31
4 show page on startup

Messages - - 3 X
2 Devices | [) Pous ~ [© 0 error(s) [® 0 warning(s) [@ 0 messagets) | X ¥
Lastbuid: @ 0 ® 0 Precomple / Project user: (nobody))

Figure 2-18 Add device profile

3. Inthe Device repository pop-up window, click Install.

-15-

AX series programmable controller software manual Getting Started

¥ Device Repository X

Location | System Repository v Edit Locations...
(C:\ProgramData\Invtmatic Studio\Devices)

Installed device descriptions

ii-mm; for a fulltext search l Vendor: | <All vendors> v Install...

Name Vendor Version Description
(i miscelaneous

+ [Fieldbuses

+- Bl HMI devices

* (@ pLcs

+ @ SoftMotion drives

Close

Figure 2-19 Install device
4. From the Install device profile window, select the device profile to be installed from a local folder and then click
Open.
Install Device Description X
« v 4 [« AX70 > AX70_APPV2.0.5.1 > AX7X v O BEAXT P

|y i =y M @

Z) e d=h

b
(52}
J

O WPSHIE

o g 2] Shenzen INVT-AX7X-CPU_1.2.04.dev.. 2020/4/2 16:19 XML 378

P
B sz
= BR
5
¥ T
D BEx
W =E
- E5% ()

- EFEE (D)
v < >

IZFE(N): |Shenzen INVT-AX7X-CPU_1.2.0.4.devdesc.xml v ; Sercos XML device descripti v

[Fo] =

Figure 2-20 Install device profile
Note: All device profiles provided by INVT can be added by following the steps above.
2.4.2 Creating new project

1. Click the project creation icon = at the upper left corner or choose File > New Project, or directly click New Project
in the window to quickly create a project. Select the project category, template, save path and file name, as shown in
the following figure.

-16-

AX series programmable controller software manual

Getting Started

5] New Project X

Categories Templates

Empty project HMI project Standard Standard
project project w...

A project containing one device, one application, and an empty implementation for PLC_PRG |

Name [Unb"dedz |
Location [D:\Invumbc Studio\Project v ‘E

Figure 2-21 New project

2. Click OK. On the standard project setting interface that appears, select the device type and programming language.

See the following figure.

You are about to create a new standard project. This wizard will create the following
objects within this project:

&

-0One programmable device as specified below

- Aprogram PLC_PRG in thelanguage specified below

- A cyclic task which calls PLC_PRG

- A reference to the newest version of the Standard library currently installed.

Device [INVT AX7X (Shenzhen INVT Electric Co., Ltd.) -]

PLC_PRG in lﬁnﬂ Eﬁ @ vl
Continuous Function Chart (CFC)
Continuous Function Chart (CFC) - page-oriented
Function Block Diagram (FBD)
Ladder Logic Diagram (LD}

Seiuential Function Chart iSFCi

Figure 2-22 Standard project setting page

3. On the configuration and programming interface, double-click PLC_PRG(PRG) to write programs. See the following

figure.

B Untitled1 project” - Invtmatic Studio. . - | | i il
fle Edit View Project Buld Onfine Debug Took Window Help T
N @& oo DB X (MM N 9% 0@ 8 Applicstion [Device: PLC Logic] = B) w K [(F 723 F & M

q 5] e pre x -
ERpr— 1 PRoGRaN PLC_%RG
: gl

= @ peve iroT axm)
= (8 AcLoge
= €3 Application
0 teary znager
- %wmw- | (s [@ |
= & ManTask 1
& pue pac
% HIGH PUSE IO
% SoftMaton General Auis Poal

3 ED VR

100% @
“ i v
Messages - Total 0 sror(s), O warningls), 0 message(s) -3 x
- [© 0 errarts) [0 warning(s) [@ 0 messageis) | %
Description Project Object Position
2 Devem [70m
Lestbubd: @0 0 Precorple o/ G Project user: (nobody) (]

Figure 2-23 Invtmatic Studio configuration and programming page

-17-

AX series programmable controller software manual Getting Started

2.5 Typical steps of project writing

From the above example, writing a user program with MC motion control functions generally requires the following steps.
Step 1 Application system hardware configuration

Configure network according to the main controller, expansion module, network type, servo slave node and other
hardware used.

Step 2 User program writing

According to the control function to be implemented, write motion control with one POU (such as POU1), and write
common logic control with a POU (such as POU2).

Step 3 Servo driver parameter configuration

Configure the objects of SDO and PDO according to the servo name in the hardware configuration and the operation
mode of the servo. Ensure that the communication objects required between the MC function block of the user program
and the servo are filled in the configuration table.

Step 4 Servo motor parameter configuration

Correctly fill in the resolution of the servo motor encoder, the transmission ratio of the mechanical structure, the
characteristics of the axis movement range and other parameters, so that the displacement command of the control object
corresponds accurately to the actual displacement.

Step 5 Task arrangement

Based on the real-time requirements of control, execute the motion control function POU1 in the EtherCAT task and set
the cycle to 4ms, the priority to 0; execute the common logic control POU2 in common tasks and set the cycle to 20ms,
the priority to 16.

Step 6 Online debugging

Connect the AX series programmable controller to PC via LAN network correctly. Power on the programmable controller,
download and debug the user program, and eliminate user program bugs (if possible, you can connect the servo drive
system to the programmable controller and then debug. If the servo system is not available, you can set the servo as a
virtual axis; if the programmable controller is not available, you can simulate and debug the user program on the PC to
eliminate possible errors in the user program).

2.6 Examples of program writing and debugging

Here is an example of a basic servo control program to give you a first glimpse of the programming process before you go
through the principle of the programming system and the method of compiling the motion control program.

Write a simple program that allows the AX series CPU programmable controller to implement the following functions:
The servo motor repeats rotating forward 50 revolutions, and then reversing 50 revolutions.

The programming method and steps of the routine are as follows:

Step 1 Add the corresponding equipment: EtherCAT master node, servo drive, motor shaft.

Step 2 Handle the motion control of the servo in the high real-time EtherCAT task cycle.

Step 3 Set relevant parameters.

Step 4 Write program.

2.6.1 Adding devices

1. Add an EtherCAT SoftMotion master node and an EtherCAT network bus.

-18-

AX series programmable controller software manual

Getting Started

[MC_Power.project - Invimatic Studio

Fle Edit View Projec Buld Onine Debug
BFE@ o~ RBRX ANHGIR TR & E T

Update Device...
Edit Object
Edit Object with...
Edit IO mapping
Import mappings fram CSV...
Export mappings to CSV...
Online Config Mode...
Reset Origin Device [Device]
Simulation
Visual Element Repository
W License Manager...

Program manual

Hardware manual

[Bvic_Power project - Invtmatic Studio

- o %
Tools Window Help Y
Application [Device: PLC Logic] - & & » = X[°|M|w|%

PLC_PRG X @ Trace [n# SM Drive GenercDSP402 | -

1 PROGRAM PLC_PRG &)

2 VAR

3 MC_Power_0:MC_Power: M

N .

s _0:MC_Home:

€ MC_MoveRelative_0:MC_MoveRelative;

7 SetTorque:UINT:=1000;

s END_VAR

[100 % @

1] ~

3| mc_Power_0(

4 Axis:= SM_Drive_GenericDSP402,

5 Enablei= ,

€ 1toron.:

7 =

N .

s

10 3 .

11 1= SM_Drive_(

12 Execute:= MC_Power_0.Status,

L3 Distance:= 100,

14 Velocity:= 10,

15 Acceleration:= I,

L€ Deceleration:= 3,

17| Jerk:= ,):

18

Insert device

g devies () Update device

| vendor | <alvendors>

of of

- =

& EtherNet/IP

* (3 Home8Building Automation
o Mochus

Vendor Version Description -

-Smart Software Soluions GbH ~ 3.5.15.0 EtherCAT Master,

[Group by category []

enly) (]

@ Wame:EtherCAT Master Softoton

Categories: Master
Version: 3.5.15.0
Order Number:

‘Vendor: 35 - Smart Software Solutions GmbH

Description: EtherCAT Master SoftMotian...

Append selected device as last child of
Device

@ (You can select another target nade in the navigator while this window is apen.)

-

2. Add a servo device.

|8 untitled2.project* - Invtmatic Studio

Fle Edt View Project Buld Online
DA & > f R X (A

Visual Element Repository

Figure 2-24 Add EtherCAT master node

Debug Tools Window Help Y
05N 9% 0@ n- (§ B8 | Application [Device: PLC Logic] - O €8) w & [(2 2 ¢

Project user: (nobody) Q

Lastbuld: © 0 ® 0 Precomple ./ @

-19-

AX series programmable controller software manual

Getting Started

E At
File Edit View Project Build Online Debug Tools Window Help A ¢
He @ (@ Add Device %)
Name [INVT_DA200_262
o]
acton
- J ;':: ouy| @ Hosenddevica O bast sevica (O Update device
= Bl Pclopg |[seng for o fllext search Vendor <Al vendors> d
: om Name Vendor ~
= @ Feduses
CL
“@1 = ¥ EtherCAT
| = ¥ Save
& d * [Deita Blectronics, Inc. - Servo Drives.
(23 fm slectron - fm lectrone EtherCAT Devices
2 o : o
@ evercar T mesTA
3 SoftMotg
IEIE aT(cog)orve | | movt mousTRIAL
* [eETTTIIIO - AC Servo Driver v
< >
1=} (] Display [visplay
@ mame:DA2004 EtherCAT(CoE) Drive
S Vendor: IW/T
POUS Categories: Slave. i
s Version: Revsion= 16 500000048
E e Order Number: IWVT_DA200_262
3 caT YMU: DVVT_DA200_EtherCAT V262_200313.xm Device: DA2D0-N Ether CAT(CE) Drive
Append selected device as last child of I_ 3 x
EtherCAT_Haster_Softtiotion
@ (1ou can select another target node Inthe navigator whie this window s open.) | S
LT
Q
Figure 2-25 Add EtherCAT slave node
3. Add a servo axis.
Untitled2.project* - Invtmatic Studio - o x
Fle Edit View Project Buld Online Debug Tools Window Help A4
Hed & - B K (MMM S M8 @& [T | # | Application [Device: PLCLogic] - @8 O) w R [[Z=¢z+2 3 |o M|+ |2
Devices > 8 X [5] PCPRG X =
= &) tnitedz = 1| PROGRAM ELC_PRS ®]
= VAR
[Device T Ax7) o v o
= B rciogic -
= © Application
0 Lorary Manager
) pc_Prs (rRG)
= Task 100 %
] & Cut - ﬁ_
Sefmy Copy
S M@ paste
K Delete
3 HIGH PULSE T Rt
= (@ EtrerCAT_Mas actoring '
@ v _paz Store
2 SoftotonGer (= properties..
Add Object
£ Add Folder...
Insert Device...
- Disable Device
POUS Update Device...
= [thoted? [§° Edit Object
B Project settngs Edit Object with...
- = 100% [@
Edit 10 mapping =
Import mapp-ings from CSV... l o o E——
Export mappings to CSV... s =) .
+ [© 0 error(s) [© 0 waming(s) [@ 1 messagets) | % %
| Add SoftMotion CiAd02 Axis | - - -
- - - Project Object Position
Add SoftMotionLight CiA402 Axis
&) Visual Element Repository . - Lastbuid: @ 0 & 0 Precomple @ Project user: (nobody) [+]

Figure 2-26 Add a servo axis

2.6.2 Writing a function to handle POU

In Invtmatic Studio programming environment, there is an EtherCAT_Task task and a MainTask task for the default task
configuration. The MainTask task contains a POU named PLC_PRG which is created at the same time as the new project
is created. Create a POU for servo control under the EtherCAT_Task task.

-20-

AX series programmable controller software manual Getting Started

Untitled1.project” - Invimatic Studio - [u] X

Fle Edit View Project Buid Online Debug Tools Window Help

E- = =] LR R B i [§" |8 | Application [Device: PLC Logic] - ©f . B
Devices -1 x PLC_PRG x -
ERyp— = 1| PROGRAM PLC_PRG
= (@ Device T 70 i sy
ﬁ-j@g Picloge | == e
=& Application
(@ Library Manager
[5) PLc_prG (PRG)
= % Task Confiquration — el
& EthercaT_Task 1
= & MaiTask
& pic_prG
" HIGH_PULSE 10
= ([EtherCAT_Master_SoftMotion (EtherCAT Ma:
(i 1T_DA200_262 (DA200-N EtherCAT(C|
"3 SoftMotion General Axis Pool
100% (IR
< 3)|e >
[B1" Messages - Total 0 error(s), 0 warning(s), 1 message(s)
Lastbuid: € 0 ® 0 Precompie @ Project user: (nobedy) NS Ln1 Coll Chl Q

Figure 2-27 PLC_PRG programming page

1. Right-click the Application in the device tree, select Add Object > POU to add a POU for EtherCAT servo control.

Untitled1.project” - Invtmatic Studia - [u] X
Fle Edit View Project Buld Online Debug Tools Window Help Y
bl & o 0 84 0 G2 a1 (3| # | Application [Device: PLC Logic] + ©§ 5
Devices - ax PLC_PRG x -
=) uhsiteds ~ 1 PROGRAM PLC_PRG

= (@ Device @aVT XD b O

3 mDwvR
= B pLetoge -

= £} Application

) Lorary Maney * O
pic_proor| B CoPY
= Task Configu Paste
& etherca] K Delete . 100 % [
= & MairTas Refactoring s
Bec|_ |
. HIGH_PULSE IO ore @ Alarm Configuration..
= EthercaT_Master_so| i@ Properties. & Application...
@) w7 Da200_z62[[5] Add Objet B Ass Group.
2 SoftMlotion General A = Add Folder.. @ Cam table.
3" EditObject @ CNC program.
Edit Object with.. &5 CNC settings.
B2 Data Sources Manager...
O Login g
@¢ DUT.
Delste application from devie External Fle,
@) Visual Element Repository @ Global Variable List.
License Manager. & Image Pool
‘ =0 Interface.
P 0 = o
rwiram manua ‘ @ Network Variable List (Receiver.
Hardware manual
@ Network Variable List (Sender... 5
Software manual T Persistent Variabl 100 % i@
< ersistent Variables... 8
e INVT Website
E] Messages - Total 0 error(s),0 v & Ppou.
feedback @) POU for implicit checks. & e) (]

Figure 2-28 Add a POU

2. Double-click EtherCAT_Task in the device tree and click Add Call in the configuration interface to select EtherCAT
POU.

Untitled1.project” - Invtmatic Studio - [u] X

file Edit View Project Buld Online Debug Tools Window Help

EN-= =] dh 45 4 0 [§ | ¥ | Application [Device: PLC Logic] ~ ©f : £
Devices > 2 X PLC_PRG EtherCAT_pou & EtherCAT Task x -
=1 Untited? ~|| configuration
= [Device (VT AX7X)
= 80 pic Logc Priority (0.31) |1

= 1 Application _—

Libr M
M Loy v tenel e tez00ms) [1 =

EtherCAT_pou (PRG)
PLC_PRG (PRG)

Watchdog

& ; kE;D;Zg:mmk [Cenable
=5 ManTack Time (c.g. t4200ms) o

B i pre Sensitivity

"3 HIGH_PULSE 10
=+ [EtherCAT_Master_SoftMotion (EtherCAT Ma:

[T _DA200_262 (DAZ00-N EtherCAT(C]
Y Sefotin Corerd At Poc Add Call < Remove Call [Change Call | 4 Move Up # Move Down | *=Open POU
ofthotion Generdl A Pool

pOU Comment

< >

[B) Messages - Total 0 error(e), 0 warning(e), L message(s)]
Lastbuid: @ 0 @ 0 Precompie o/ @ Project users (nobady) Q

Figure 2-29 Call a POU for EtherCAT task

-21-

AX series programmable controller software manual Getting Started

2.6.3 Setting motor parameters

For precise control of the movement position, the programmable controller must accurately calculate the position of the
servo motor. Based on the operating characteristics and stroke characteristics of the application system, select the Axis
type and limit. Therefore, the programmable controller can calculate the feedback information of the motor encoder to
obtain the accurate position, and then avoid errors caused by the accumulated overflow of the encoder pulse nhumber.

Untitled2.project* - Invtmatic Studio - [u} *®
Fle Edit View Project Buld Online Debug Tools Window Help A4
Hed & P (= 7 |8 | Application [Device: PLC Logic] ~ O % -
Devices v 3 X [E] PLC_PRG " SM_Drive_GenericDSP402 X -
= 3 tntted? -
= @ Device @WT A7) 2 Auds type and limits Velocity ramp type
= @0 PLc Logic ’ [virtual mode Moduo settings @ Trapezoid
=€) Application Scaling/Mapping @ Modulo Modulo value [u]: [360.0 Q sin*
D Lorary Manager Commissioning O Finite () Quadratic
= O Quadratic (smooth;
[8 Pic_pra (PRG) SM_Drive_ETC_GenericDSP02: U0 Software error reaction 2 Q)
= (@@ rask Configuration Mapping Deceleration [u/s*]: Identification
& EtherCAT_Task SM_Drive_ETC_GenericDSP402: Max. distance [u]: 0 : 0
= & MaiTask IEC Objects
&) pc_rre Status Oynagiglimits Position lag supervision
9 HIGHLPULSE 1O velodf [ufs}: Acceleration [u/s?] Deceleration [u/s3] Jerk [u/s?]: deactivated e
= (] EtherCAT Master_Softotion (EtherCAT Mastd | | IMTO™a0N) 1000 1000 10000 Lag limit [u]:
= (@ mWT_DA200_262 (DA200-N EtherCAT(CoE
1
'3 softMotion General Axis Pool
Virtual made: application without actual axis added
Modulo: periodic mode, suitable for motors that rotate in one
direction and pay no attention to the cumulative position
< >
POUS .1 x Finite: linear mode, suitable for reciprocating motors such as
=y = screw and linear motors.
B project settngs
< >
Messages - Total 0 error(s), 0 warming(s), 1 message(s) -3 x
Devices - [0 0 error(s) [® 0 warning(s) [@ 1 message(s) | X ¥
Description Project Object Position

Lastbuld: @ 0 H 0 Precomple @ Project user: (nobody)

Figure 2-30 Motor parameter settings

For the reciprocating mechanism of the lead screw type, Finite is preferred as the lead screw stroke is limited and we
should know its absolute position within the stroke range.

For a single-direction shaft, Modulo is preferred as the linear mode may cause position counting overflow, resulting in
position calculation errors.

The encoder parameters of the motor (such as resolution) and the mechanical deceleration ratio of the application system
may be different. They need to be set based on the actual situation during programming, as shown in the following figure.

B untittedz project - Invtmatic Studio - u] *
File Edit View Project Build Online Debug Teels Window Help v
Dl & [R [=3 T | | Application [Device: PLC Logic] - O8 < =
Devees. * 8 x| [5 Aceme "o SM_Drive_GenericDSP402 X -
= (3 unoted? - -
eneral Scong
= @ Device (0T AX0 e (] Invert direction
= @l pcLoge Scaling/Mepping 16910000 Increments <=> motor tums 1
- £ Application
D Liorary manasger Commissioning
s 3
R ot £ " —
= @ resk Configuraton Magpin Wi tion displacement
& resk onfguraty opping .
& EtherCAT Task SM_Drive_ETC_GenericCfsp402: a al displacement of the
¢ Ol A automatic mapping
= B varask i ntrol
Inpus
8) e me Satus -
% MG pusE J0 Creedhest
Softonon (EtherCAT Mases | | Ifomation
262 (DAZD0-N EtherCAT(CoE
WP S _Drive_GenercDsP402 (M _Drive |
% Sofwtoten Genersl e Pucd Servo encoder pulse
number per turn; . - - =
Outputs
Cydic object Obpect number Address Type ~
< >
POUs - X
= 3 wnovesz -
[Sroject Setings
« >
Messages - Total 0 ervar(), O warnng(s), 0 messagels) - x
Devices + [© 0 ermoris) [® 0 waming(s) [@ 0 messagets) | % ¥
Description Project Object Position
Lastbukt: @ 0 (B0 Precomple o @ Project user: (nobody)]

Figure 2-31 Motor encoder parameter settings

The DA200 servo matching motor has two typical resolutions. The resolution of normal incremental encoders is 20bit, that
is, 1048576 pulses per revolution; and the resolution of absolute encoders is 23bit, i.e. 8388608 pulses per revolution. In

-22-

AX series programmable controller software manual Getting Started

actual operation, the programmable controller sends the required number of pulses to the servo drive by EtherCAT
communication to control the servo operation. Therefore, the encoder resolution needs to be accurately set according to
the actual situation, as shown in the figure above. Take a 20bit encoder without a reducer as an example. When the servo
is commanded to run 1 unit, the servo will select 1 revolution (axis moves 360°). If the field unit in application (circled in
red in the figure above) is set to 360, the servo will select 1/360 circle (axis moves 1°) when the servo is commanded to
run 1 unit, and so on. After setting the corresponding parameters (commonly known as electronic gear ratio) according to
the actual mechanical structure, you can input the distance command according to the physical unit of the application
system movement distance, making the control parameters intuitive and easy to understand.

Please note that only integer numbers can be entered in the fields circled in red in the figure above. Because the ratio of
the parameters in the corresponding rows on the left and right sides is effective, you can enter appropriate integer values
in the corresponding rows on the left and right sides. For example, to enable the drive lead with screw rod 6.8mm (that is,
the screw rod rotates 1 circle and the screw slide block moves 6.8mm) to move after the servo motor passes through a
mechanical deceleration mechanism with a ratio of 4:1, please set as shown in the following figure.

Scaling
[[] invert direction

llﬁ:ZOOOO ‘ increments <=> motor turns 1

l4 \ motor turns <=> gear output turns 1

‘10 1 gear output turns <=> units in application :68

Figure 2-32 Setting example

The dimension of the parameters circled in red can be used as the dimension of the distance in the MC control command
later. The settings of the servo driver and motor described above must be set and verified in the corresponding items of
the servo axis, otherwise the motor will not operate as expected.

2.6.4 Writing motor positive and reverse

For the motion control of the servo axis, the default synchronization period is 4ms. Users can choose according to the
actual need, as shown in the following figure.

Untitled2.project* - Invtmatic Studio - u] X

File Edit View Project Build Online Debug Tools Window Help

W & ' RRE = I ¥ | Application [Device: PLC Logic] ~ @ N =
Devices. v 8 X | [§] PCPRG [## SM_Drive_GenericDSP402 @ EtherCAT_Master_SoftMotion X >
=) Untited? -|
= @ Device (owvT Ax7) Genera [Autoconfig Master/Slaves EtherCAT—.—."
= B pcioge Syne Unit Assignment EtherCAT NIC Setting
= € Application
(D Library Manager Log Destination address (MAC) [Broadcast [] Enable redundancy
\B] PLC_PRG (PRG) Source address (MAC) 00-00-00-00-00-00 Browse.

= @ ask Configuration EtherCAT /O Mapping

& EtherCaT_Task
= & MairTask

Network Name

EtherCAT IEC Objects @) Select network by MAC (O Select network by name

& rc_prs S Distributed Clock Options
2 HIGH_PULSE_IO

= () EthercaT_Master_Softobon (EthercaT Mastal| | IOrmetOn Cyde time [1000 S s

= (@ ™WT_DA200_262 (DA200-N EtherCAT(CoE] Sync offset pe %
Mg 5M Drive_GenerkDsP402 (5M_Drive | [Svnc window monitoring
"3 SoftMotion General Axis Pool Sync window o
<
POUS -2 x
= 1)) Unbitled2? 7

B Project Settngs

Messages - Total 0 error(s), 0 waming(s), 1 message(s) - o x
Devices ~ [© 0 error(s) [@ 0 warning(s) [@ 1 messagets) | X ¥

Description Project Object Position

Lastbuld: @ 0 ® 0 Precompie / & Project user: (nobody) Q

Figure 2-33 Servo axis motion control cycle setting

The program in the above figure is written in ST language. The relevant code is as follows:

-23-

AX series programmable controller software manual Getting Started

PLC_PRG X
1 PROGRAM PLC_FRG

3 MC_Power : MC_Power;

4 MC Movedbsolute: MC MoveAbsoluter
B iStatus: INT:=0

B 1:UINT:=
7 END VAR

CASE iStatus OF

2| MC Power|Axis:= SM Drive GenericD3P402, Enable:= TRUE, bRegulator0n:= TRUE, bDriveStart:=TRUE ,)
4| 1F MC_Power.Status
= 5 THEH
§ iStatus:=iStatus+l;
7| END_IF
s| MC MoveAbsclute (Axis:=SM Drive GenericDSP402 , Execute:= TRUE, Position:=200 , Velocity:=S , Acceleration:= 5, Deceleration:= 5,);:
10| IF MC MovelRbsolute.Done
11 THEN
1z MC_MoveAbsolute (Axis:=5M Drive GenericDSP402 , Execute:= FALSE,):
1 iStatus:=iStatus+l;
END_IF
MC_MoveAbsolute (Axis:=SM Drive GenericDSP402 , Execute:= TREUE, Positiom:=0 , Velocity:=4, Acceleration:= 5, Deceleration:= 5,):
IF MC MovelRbsolute.Done
THEN
MC MoveRbsolute (Axis:=SM _Drive GenericDSP402 , Execute:= FALSE,):|
iStatus:=1;
END_IF
END CASE

Figure 2-34 ST codes

2.6.5 Compiling user program

If there is a writing error, the error type and reason will be listed in Figure 2-30. Double-click the error description, and the
cursor will jump to the corresponding program editing window to facilitate revision. After the revision, compile again until

all compilation problems are eliminated.

I8 untitled2.project* - Invtmatic Studio - u] X
File Edit View Project Build Online Debug Tools Window Help
e d & L &]'npphm.or [Device: PLC Logic] - ©f X =
Devices ~ 8 X | 5] ACPRG ns SM Drive GenericDSP402 i EthercAT_Master_SoftMotion -
=) Unstiedz? >
, ral . R =
= (@ Deviee mwvT Ax7) General] Autocanfig Master/Slaves EtherCAT. —
= Bl AL Logc
Sync Unit Assignment EtherCAT NIC Settin
= € Application 9
(@D Library Manager Log Destination address (MAC) (S Brosdcast [Enable redundancy
\E] PLC_PRG (PRG) Source address (MAC) 00-00-00-00-00-00 Browse...
@ EtherCAT /O Mapping
8 Task configuraton Network Name
EtherCAT Task T IEC Object
& - EtherCAT IEC Objects @) Select network by MAC () Select network by name
= & vanTak
& rc pre Status Distributed Clock Options
8 HIGH_PULSE_JO
= 2 .
= [emercar_master_SoftMoton (EthercAT Mase | | 1TTOE0ON Cycle time 4000 Sl
= (@ WT_DAZ00_262 (DAD0-N EtherCAT(CoE] Syncoffset (20 3 %
WP 5M_Drive_GenericDSP402 (SM_Drive | [Sync window monitaring
2 SoftMotion General Axis Pool Syncwindow |1 2 s
< >
POUS v 2 X
= [unotiedz -
B Project Settngs
< >
Messages - Total 0 erroe(s), 0 warning(s), 1 message(s) -3 x
Devices « [© 0 errorts) [@ 0 warning(s) [@ 1 messages) | % ¥ |
Description Project Object Position
Lastbuid: © 0 B 0 Precomple o w4 Project user: (nobody) Q

Figure 2-35 Program compilation

Click Device > Communication Settings > Scan Network to select the device and click Wink, then the SF, BF, CAN and
ERR indicators of the connected device will wink three times. After the device is confirmed, download the user program
into the AX series CPU module.

-24-

AX series programmable controller software manual Getting Started

Hle Edit View Project Buld Online Debug Tools Window Help A 4
=l & [(2t~ (3 ¥ | Application [Device: PLC Logid] ~ OF X o |m
Devices v 8 x| @ pevice x hd
= i a
I Communication Settings Scanneamern] | Gateviay - | Device
PLC Logc o — Select Device X
= £} Application
Select the network path to the controller:
i) Library Manager Backup and Restore
= e Gateway1 TEa | Scan Network
e i e
= [E4 Task Configuration = 1608P_v208 wink
Y .
& EtrercaT Tesk Log Connect the scanned device b
=g MainTask [
B e e PLC Setings through the network cable
"3 HIGH_PULSE IO BES:
= [l EthercAT Master_Scftiotion (EtherCAT Master Sofmotan)| | | "€ Se!! juoe
= [™wT_DA200_262 (DA200-N EtherCAT(CoE) Drive) S ——_— BE&m::
H SM_Diive_GenericDSP402 (SM_Drive_GenericDsp 16310003
"3 SoftMotion General Axis Pool Access Rights
ARk
Symbol Rights pEES
LR
TR IShenzhen TVT
Task Deployment Ecor T
Status
Cancel
Information .
< ~
58 Devices [[POUs < >
(B Messages - Total 0 error(s), 0 waming(s), 1 message(s)
Lastbuid: © 0 ® 0 Precompie o G Project user: (nobady) L)
Untitled1.project® - Invimatic Studio — [u] X
Fle Edit View Project Build Online Debug Tools Window Help Y
2= PRI @ - OF | | Applicaton Device: PLC Logic) { G5 X s M
Devices -7 x PLC_PRG (7 EtherCAT_Master_SoftMotion X [[f] Devicz x ~
=3 inbtieds -
= Device AT AXTO General [Autoconfig Master/Slaves EtherCAT. *—
= B0 pLcLogc
. Sync Unit Assignment EtherCAT NIC Setting
=1} Application
) Lirary Manager e Destination address(MAC) | FF-FFFF-FF-FF-FF Broadcast [] Enable redundancy
AT_pou (PRG) Source address (MAC) 00-00-00-00-00-00 Browsea..
EtherCAT /0 Mapping
PLC_PRG (PRG) Netwiork Name <thi
= (8 Task Configuration T
er jects @ Select network by MAC (O Select network by name
& EtherCAT Task.
= MainTask Status Distributed Clack Options
] pLc_pRG
3 HIGH_PLLSE_I0 Information Cycle time 4000 S
= EtherCAT_Master_SoftMotion (EtherCAT Ma: Syne offset 0 H %
= INVT_DA200_262 (DA200-N Ether CAT(C| Sync window monitoring
© th « d
H&P SM_Drive_GenericDSP402 (SM _Dr Syncwindow |1 2] e
"3 Softiotion General Axis Pool
< > € 2
@ Messages - Total 0 error(s), 0 warning(s), 1 message(s)|
Lastbuid: € 0 @ 0 Precomple /' & Project user: (nobody) 4]

Figure 2-36 User program download

2.6.6 Running monitor program

After logging in to the device through the button marked in a red square in Figure 2-36, the program is running if you can
observe the actual operation of the servo or check the position value of the servo axis of the host computer. At this point,
the required servo jogging and the 2-cycle running triggering functions has been implemented, which shows the

programming process is complete.

-25-

AX series programmable controller software manual Network Configuration

3 Network Configuration

The network configuration of AX series programmable controllers mainly includes: ModbusTCP, ModbusRTU, EtherCAT,
and CANopen.

3.1 ModbusTCP
3.1.1 ModbusTCP_Master

The number of variables that ModbusTCP can access is defined as follows:

® Read coil (0x01), number of coils 1-2000 (0x7D0)

® Read discrete coils (0x02), number of coils 1-2000 (0x7D0)

® Read holding register (0x03), number of registers 1-125 (0x7D)
® Read input register (0x04), number of registers 1-125 (0x7D)

® Write a single coil (0x05)

® \Write a single register (0x06)

® Write multiple coils (OxOF), number of coils 1-1968 (0x7B0)
® Write multiple register (0x10), number of register 1-120 (0x78)

ModbusTCP_Master is an important component of the ModbusTCP_Master function module. Before using the master
node, the corresponding library files must be added as follows:

® Create an application project for the ModbusTCP_Master.

® Add the library file "CmpModbusTCP_Master_x.x.x.X.library" required by this module.
3.1.2 ModbusTCP_Slave

® Create an application project for the ModbusTCP_Slave.
® Add the library file "ModbusTCP_Slave_x.x.x.x.library" required by this module.
The ModbusTCP_Slave defines the storage area that can be accessed from outside. The detailed area is as follows:

Table 3-1 ModbusTCP_Slave function codes

Function code of TCP
Address name Range Offset
master node

01 %QX 0.0-511.7 N/A

05 %QX 0.0-511.7 N/A

02 %IX 0.0-511.7 N/A

04 %IW 0-511 N/A
03/06 %MW 0-8192 5000
03/06 %QW 0-511 N/A

01 %MX 0.0-7565.7 5000

05 %MX 0.0-7565.7 5000

Table 3-2 Example of bit, byte, word, and double word correspondence of AX series controllers

%_X 195.7 - 195.0 194.7 -194.0 193.7 - 193.0 192.7-192.0
% B 195 (8 most 194 (8 leaset 193 (8 most 192 (8 leaset

- significant bits) significant bits) significant bits) significant bits)
%_W 97 (16 most significant bits) 96 (16 leaset significant bits)
%_D 48

-26-

AX series programmable controller software manual Network Configuration

3.2 ModbusRTU

AX series programmable controllers support two Modbus serial communications, COM1_RS485 and COM2_RS485, both
of which support the standard ModbusRTU protocol, and can be independently configured as a master or slave,
supporting 2400, 4800, 9600, 19200, 38400, 57600, 115200, etc. 7 baud rates.

The number of variables that ModbusRTU can access is defined as follows:
® Read coil (0x01), number of coils 1-2000

® Read discrete coils (0x02), number of coils 1-2000 (0x7DO0)

® Read holding register (0x03), number of registers 1-125 (0x7D)
°

Read input register (0x04), number of registers 1-125 (0x7D)

Write a single coil (0x05)
® \Write a single register (0x06)
® Write multiple coils (OxOF), number of coils 1-1968 (0x7B0)

® Write multiple register (0x10), number of register 1-120 (0x78)
3.2.1 ModbusRTU_Master

Create an application project for the ModbusRTU_Master. There are two serial ports in AX series programmable
controllers. To add ModbusRTU_Master module, the corresponding library files "ModbusRTU_Masterl_x.x.x.x.library"
and "ModbusRTU_Master 2_x.x.x.x.library" are needed (ModbusRTU_ Masterl_ x.x.x.x.library for the hardware
COM1_RS485 port and ModbusRTU_Master2_x.x.x.x.library for the hardware COM2_RS485 port).

3.2.2 ModbusRTU_Slave

Create an application project for the ModbusRTU_Slave. There are two serial ports in AX series programmable controllers.
To add ModbusRTU_Slave module, the corresponding library files "ModbusRTU_Slavel x.x.x.x.library" and
"ModbusRTU_Slave2_x.x.x.x.library" are needed (ModbusRTU_Slavel x.x.x.x.library for the hardware COM1_RS485
port and ModbusRTU_Slave2_x.x.x.X.library for the hardware COM2_RS485 port).

The ModbusRTU_Slave defines the storage area that can be accessed from outside. The detailed area is as follows:

Table 3-3 ModbusRTU_Slave function code

Function code of RTU
Address name Range Offset
master node

01 %QX 0.0-511.7 N/A

05 %QX 0.0-511.7 N/A

02 %IX 0.0-511.7 N/A

04 %IW 0-511 N/A
03/06 %MW 0-8192 5000
03/06 %QW 0-511 N/A

01 %MX 0.0-7565.7 5000

05 Y%MX 0.0-7565.7 5000

3.3 EtherCAT master node

For the parameter configuration of the EtherCAT master node, please refer to the relevant instruction in Invtmatic Studio
help documents. Here is an example of the connection between an EtherCAT master and a DA200 servo drive slave for
reference.

-27-

AX series programmable controller software manual Network Configuration

1. Creating the DA200 servo application project

Add the library file "INVT_DA200_xxx.devdesc.xml" required for this module. Take INVT_DA200_262 as an example.
Note:

® The highest priority 0 is recommended for the creation of EtherCAT Master SoftMotion projects.

® |tis recommended that the synchronization period and the task period be set consistently at 4ms or more.

® Create EtherCAT Master SoftMotion through a separate task. Separate the EtherCAT Master SoftMotion tasks from
1/0, analog input/output, Modbus communication and other tasks.

2. Select the motion controller device profile in the device tree, right-click it and add the EtherCAT Master SoftMotion as
shown in the following figure.

ﬂ Add Device X

Name |EtherCAT_Master_SoftMotion

Action
@ Append device () Update device
[string for a fltext search | vendor | <alvendors> v
Name Vendor Version Description =
(i) miscellaneous
= [Fieldbuses
AN CANbus
= peii EtherCAT
=" pk Master
(i EthercaT Master 35 - Smart Software Solutions GmbH 3.5.15.0 EtherCAT Master...
35 - Smart Software Solutions GmbH ~~ 3.5.15.0 EtherCAT Master SoftMotion...
+ WD EtemetAdmpler v

[Group by category [] Display all versions (for experts only) [] Display outdated versions

Ei Name: EtherCAT Master SoftMotion ~
Vendor: 35 - Smart Software Solutions GmbH

Categories: Master -
Version: 3.5.15.0 g’
Order Number: =

Append selected device as last child of
Device

® (You can select another target node inthe navigator while this window is open.)

2 Add Device Close

Figure 3-1 Add the EtherCAT motion control master

3. Select EtherCAT_Master_SoftMotion in the device tree, right-click it and add INVT DA200 servo drive as shown in the
following figure.

@ Add Device X

Name (INVT_DA200_262

Action
(@ Append device () Insert device () Update device
[string for a fltext search | Vendor <Al vendors> -
Name Vendor &
= (@ Fieldbuses
= ok EtherCAT

=- puk Slave

+ [Delta Electronics, Inc. - Servo Drives
(4 ifm electronic -ifm electronic EtherCAT Devices
+ [T
= (23 INVT INDUSTRIAL

= [Servo Drives

1 | loa200-n EthercaT(Cor) Drive | INVT INDUSTRIAL

*# [l Panasonic Corporation, Appliances Company - AC Servo Driver

®

[7] Group by category] Display all versions (for experts only) [] Display outdated versions

@ Mame:DA200-N EtherCAT(COE) Drive ~
Vendor: INVT INDUSTRIAL

Categories: Slave -
Version: Revision=16 200000048 *
Order Humber: INVT_DA200_262 -

Description: EtherCAT Slave imported from Slave XML: INVT_DA200_EtherCAT_V262_200313.xml Device:
DA200-N EtherCAT(CoE) Drive v

Append selected device as last child of
EtherCAT_Master_SoftMotion

® (You can select another target node in the navigator while this window is open.)

2 I Add Device I Close

Figure 3-2 Add the DA200 servo drive

-28-

AX series programmable controller software manual Network Configuration

4. Select the INVT_DA200_262 in the device tree, right-click it and add the motor axis (select SoftMotion's CiA 402 axis).
Add the call program as shown in the following figure.

B unitiedz project - nvtmatic Studio o x
file Edt View Project Build Oniine Debug Tools Window Help v
N | &~ " - [|#8 | Applcation [Device: PLC Logic] ~ ©§

Devces T %[@ Pceme x 3 MGLAUSEID | Ehercar maser Softomn B Tekcngronn | emercar Tek
- PROGRAM PLE_PR
VAR

o .

D

Lsthdd 00 B0 Peoewke o G Project user: (nobody Q

Figure 3-3 DA200 servo drive application example
3.4 CANopen

CANopen is a high-level communication protocol that is based on the CAN (Controller Area Network) protocol, including
communication profile and device profile.

The communication model defines four types of messages (communication objects).
® Management message

Layer management, network management and ID assignment services: such as initialization, configuration and network
management (including: node protection).

The services and protocols conform to the LMT, NMT and DBT services sections of the CAL. These services are based on
the master-slave communication mode, which means there can only be one LMT, NMT or DBT master node and one or
more slave nodes in a CAN network.

® Service Data Object (SDO)

By using indexes and sub-indexes (in the first few bytes of a CAN message), the SDO enables clients to access items
(objects) in the device (server) object dictionary.

SDO is implemented through a multi-domain CMS object in CAL that allows the transfer of data of any length. The data
will be split into several messages when it exceeds 4 bytes.

The protocol confirms the service type: generating an answer for each message (two IDs are required for an SDO). SDO
request and answer messages always contain 8 bytes (meaningless data lengths are indicated in the first byte which
carries the protocol information). SDO communication has many protocols.

® Process Data Object (PDO)

PDO is used to transfer real-time data from a creator to one or more recipient s. Data transfer is limited to 1 to 8 bytes (for
example, one PDO can transfer up to 64 digital I/O values, or 4 16-bit AD values).

PDO communication has no protocol defined. PDO data content is defined only by its CAN ID, assuming that the creator
and recipient s know the data content of the PDO.

Each PDO is described by two objects in the object dictionary:

1. PDO communication parameters: determine which COB-ID will be used by the PDO, transmission type, prohibition time,
and timer period.

2. PDO mapping parameter: a list of objects in the object dictionary that are mapped to the PDO, including their data

-29-

AX series programmable controller software manual Network Configuration

lengths (in bits). The creator and recipients must know this mapping to interpret PDO content.
PDO message content is predefined (or configured at network startup).

Mapping application objects to the PDO is described in the device object dictionary. If the device (creator and recipients)
supports variable PDO mappings, the PDO mapping parameters can be configured using SDO messages.

PDO can be delivered in the following modes:

1. Synchronization (by receiving SYNC objects)

Aperiodic: The transmission is pre-triggered by a remote frame or by an object-specific event defined in the device profile.
Periodic: The transmission is triggered after every 1 to 240 SYNC messages.

2. Asynchronization

The transmission is triggered by a remote frame or by an object-specific event defined in the device profile.
® Predefined messages or special function objects:

SYNC

Time Stamp

Emergency

Node guarding

3.4.1 CANopen master node configuration

3.4.1.1 Master node usage process

® |Install the CANopen slave devices.

The associated CANopen slave device profile must first be installed into the system. The device profile can be a
*.Devdesc.xml file or an EDS (Electronic Data Sheet) file for the manufacturer.

® Add CANbus to the device tree.

The base node of CANopen (the uppermost entry in the CANbus configuration tree) must be a CANbus object. A CANbus
can be inserted underneath the device node of the AX series programmable controller. The device tree structure after
adding a CANbus is shown in the following diagram.

Devices v 3 X
=13 Untitled2 v
= () Device (INVT AX7X)
=B PLc Logic
= 1} Application

m Library Manager

|£] PLC_PRG (PRG)
= _44 Task Configuration

= @ MainTask

&) PLC_PRG

'3 HIGH_PULSE_IO
[canbus (CANbus)
‘& SoftMotion General Axis Pool

+

Figure 3-4 Device tree structure with a CANbus
3.4.1.2 Adding CANopen management device

Under the CANbus, add a CANopen Management device, which can be used as a CANopen master. The device tree
structure after adding the device is shown in the following diagram.

-30-

AX series programmable controller software manual

Network Configuration

Devices v 3 X
= (3 Untitled? v
= ‘_B Device (INVT AX7X)
=B PLC Logic

= 1L} Application
m Library Manager
|£] PLC_PRG (PRG)
= E Task Configuration
=-§& MainTask
&) PLC_PRG
3 HIGH_PULSE_IO
= [({) canbus (CANbus)
+|i'_ﬂ CANopen_Manager (CANopen_Manager) I
2 SoftMotion General Axis Pool

Figure 3-5 Device tree structure with a CANopen master

3.4.1.3 Adding CANopen slave node

Take our DA200 CANopen slave as an example. Add the DA200 slave device under CANopen Manager after adding the

EDS file of this slave, as shown in the following diagram.

=[] Device {TMVT AX7X)
+-E) PLC Logic
"X HIGH_PULSE_IO
= [canbus {CANbus)

[Da200_Drive (DA200 Drive)

therCAT_Master_SoftMotion (EtherCAT Master SoftMation)
2 SoftMotion General Axis Pocl

Figure 3-6 Device tree structure with a CANopen slave
The software configuration of the CANopen master is complete.
3.4.2 Parameter configuration of CANopen master
Configure Network and Baud Rate of the CANDbus first.

Network: the number of CAN networks connected via the CANbus, range: 0-100.

Baud Rate: the baud rate used for transmission on the bus, the following baud rates can be set: 10kbits/s, 20kbits/s,

50kbits/s, 100kbits/s, 125kbits/s, 250kbits/s, 500kbits/s, 800kbits/s, and 1000kbits/s.

[2] PLcPrRG 1) canbus x
G I

enera General
Log Network ° B
CANbus IEC Objects Baudrate (kbit/s) 250 v
Status

Information

Figure 3-7 Parameter configuration of CANbus

CAN

CANopen Management is a node under the CANbus node that supports CANbus configuration through internal functions.

-31-

AX series programmable controller software manual Network Configuration

It is generally used as the CANbus master. The configuration page is shown in the following figure.

m CANopen_Manager X -
General
General
Log Node ID 127 = Check and Fix Configuration.., cn"/—\
open
| CANapen 1/0 Mapping Autostart CANopen Manager Palling of optional slaves
CANopen IEC Objects Start Slaves NMT error behaviour |Restart Slave w

[NMT start all (if possible)
Status
Guarding

Inf ti
nrormation Enable heartbeat producing

Node ID 127

A 4

Producer time {ms) 200
SYNC TIME
[[] Enable SYNC producing [[] Enable TIME producing

COBID (Hex) 16% (80 COBID (Hex) 16%# [100

ar| |4

Cycle period (ps) Producer time (ms)

ar|]

Window length {ps) 1200

[] Enable SYNC consuming

Figure 3-8 Parameter configuration of CANopen master

Node ID: Provides an array pair module that CANopen Manager can correspond to one-to-one, with ID values of 1-127
(must be a decimal integer).

Guarding: Heartbeat mode is a traditional protection mechanism that can be handled by the master station and the slave
station modules, different form node protection. Normally the master is configured to send a heartbeat to the slave.

Enable heartbeat producing: If this option is enabled, the master will send heartbeats continuously according to an
internally defined heartbeat time. If a new slave heartbeat function is added, their heartbeat actions will be automatically
activated and configured, i.e. the node ID is automatically set in the management configuration and the heartbeat interval
is automatically multiplied by a factor of 1 and 2. If this option is disabled, the node protection (with a life time factor of 10
and a protection time of 100ms) is activated in the slave.

Node ID: Unique identifier of heartbeat generation (1-127) on the bus.

Producer time (ms): Defines the internal heartbeat time in milliseconds.

-32-

AX series programmable controller software manual Module Configuration

4 Module Configuration

4.1 CPU module

Please follow the steps to configure the AX series programmable controller real time and IP address.
1. Create a controller Cfg project.

Add the library file CmpPIlcCfg_x.x.x.x.library required for this module to create a standard project.
2. Define and use variables.

Table 4-1 Variable definition

Variable Type Function Remarks
) .) 0: Disabled
setEnable BOOL Time setting function
1: Enabled
i) . 0: Disabled
getEnable BOOL Time reading function
1: Enabled
- Time to be entered in
inTime ARRAY OF UINT) E.g. 14 48 56
format: hour minute second
) INPUT Date to be entered in
inDate ARRAY OF UINT E.g. 2018 12 26
format: year month day
0: Disabled
r_Enable BOOL IP reading function
1: Enabled
. . 0: Disabled
w_Enable BOOL IP setting function
1: Enabled
new_IP STRING Set a new IP E.g. 192.168.1.16
new_netmask STRING Set a new subnet mask E.g. 255. 255. 255.0
0: The execution of
Completion mark of time|commands is in progress.
setDone BOOL . i
setting 1: The execution of
commands is completed.
0: The execution of
Completion mark of time|commands is in progress.
getDone BOOL o .
obtaining 1: The execution of
commands is completed.
.)) See Controller Cfg error code
setError INT Configuration error sign
table
) See Controller Cfg error code
getError INT Get error sign
OUTPUT table
Read the native hour,
outTime ARRAY OF UINT |minute and second|E.g. 14 48 56
information.
Read the native ear,
outDate ARRAY OF UINT . y E.g. 2018 12 26
month and day information.
0: The execution of
) commands is in progress.
Done BOOL Completion mark .
1: The execution of
commands is completed.
read_IP STRING IP read E.g. 192.168.1.16
read_netmask STRING Subnet mask read E.g. 255. 255. 255.0

-33-

AX series programmable controller software manual Module Configuration

Table 4-2 Local time configuration

Variable Function Remarks
])] 0: Disabled
setEnable Time setting function
1: Enabled
])) 0: Disabled
getEnable Time reading function
1: Enabled

. Date to be entered in format:
inDate E.g. 2018 12 16
year month day

L Time to be entered in format:
inTime] E.g. 14 48 56
hour minute second

According to the time array in format inTime and inDate, where inTime[0] is hour, inTime[1] is minute, inTime[2] is second,
inDate[0] is year, inDate[1] is month, inDate[2] is day, enter the time (all inputs are required). After the settings, enable
setEnable to set the above time to current time of the AX series programmable controller CPU.

Enable getEnable to get the real time of the AX series programmable controller CPU, which is displayed in outTime and
outDate arrays.

Table 4-3 Local IP configuration

Variable Function Remarks
0: Disabled

r_Enable IP reading function
1: Enabled
0: Disabled

w_Enable IP setting function
1: Enabled

new_IP Set a new IP E.g. 192.168.1.16
new_netmask Set a new subnet mask E.g. 255. 255. 255.0

Enter the IP and subnet mask in the required format, and then enable w_Enable to set the above IP and subnet mask to
the current IP and subnet mask of AX series programmable controller EtherNET network port after entering the setup.

Note: The USB virtual network port is independent of the EtherNET network port, and the IP and subnet mask modified by
CmpPlcCfg_x.x.x.x.library is still the IP and subnet mask of the EtherNET network port when the device is connected with
a USB. After the IP or subnet mask modification, it will take some time for the AX series CPU to connect to Invtmatic
Studio on the PC.

Enable r_Enable to get the IP address and subnet mask of the controller EtherNET network port, which are displayed in
the read_IP and read_netmask strings respectively.

4.2 High-speed I/0 module
4.2.1 Creating high-speed I/O module project

Create the high-speed 1/0 module application and add the corresponding library file. Then complete the corresponding
variable configuration in HIGH_PULSE_10 device.

HSIO stands for High Speed Input and Output. HSIO can be used for high-speed counting and high-speed pulse output
with three interrupt functions that can be configured as needed. HSIO contains the device profile Shenzen
INVT-AX7X-CPU_x.x.x.x.devdesc, the high-speed counting function block library CmpHSIO_C.library and the motion

-34-

AX series programmable controller software manual Module Configuration

control function block library CmpHSIO_M.library or CmpIMC_P.library.

The HSIO device profile is used to configure various functions of the high-speed IO, including input/output port function,
counter, high-speed pulse output, filter parameters, and interruption.

The high-speed counting function block library CmpHSIO_C.library contains several function blocks, such as counter
setting, count value reading, latching, preset value, pulse width measurement, timing sampling, and count value
comparison. These function blocks can be called to complete the application needed for counting.

The motion control function block library CmpHSIO_M.library is described in detail via dedicated instructions.

AX701-C-1608P, hereinafter referred to as the P-type model, and AX7[1-C-1608N, hereinafter referred to as the N model.
The software of the P model and the N model are the same but the hardware ports are different.

4.2.1.1 P-type model port configuration description

At present, AX7[]-C-1608P programmable controller integrates 16-channel high-speed pulse input (The first 6 channels
support 24V single-ended input or differential input, and the last 10 channels support 24V single-ended input) and
8-channel pulse output which supports pulse+direction mode, FWD/REV pulse mode and quadrature pulse mode, and
each port can be configured with different functions. The configuration table is shown as follows.

. Positive
Trigger Pulse
Common . and) Common .
. . latching . width . High-speed |Compare
input Counting negative input
. . and .. |measure . pulse output Output
Input function | - function Z-signal limit ment |Output function function Function
P (default) g_ zero . P (default)
port function .| function | port
function
. . . Function
Function| Function | Function value is Function Function [Function value is| Function
value is O] valueis 1 |valueis 2 3 value is 4 value is O 1 value is 2
X0 |Common YO0 |Common
. COA CHON CHOCW/PULSO| CMPO
(In0) | input (Out0) | output
X1 [Common Y1l |Common
. CcoB CHIN CHOCCW/SIGNO| CMP1
(In1) | input (Outl) | output
X2 [Common Y2 |Common
. C1A CH2N CH1CW/PULS1| CMP2
(In2) | input (Out2) | output
X3 [Common Y3 | Common
. CiB CH3N CH1CCW/SIGN1| CMP3
(In3) | input (Out3) | output
X4 |Common Y4 | Common
. C4A Ccoz CHOP CH2CW/PULS2 | CMP4
(In4) | input (Out4) | output
X5 |Common Y5 | Common
. C4B Ciz CH1P CH2CCW/SIGN2| CMP5
(In5) | input (Out5) | output
X6 |Common Y6 | Common
. C5A c2z CH2P CH3CW/PULS3| CMP6
(In6) | input (Out6) | output
X7 [Common Y7 | Common
. C5B C3z CH3P CH3CCW/SIGN3| CMP7
(In7) | input (Out7) | output
X8 |Common
. C2A coT PWCO
(In8) | input
X9 |Common
i C2B C1T PWC1
(In9) | input
XA |Common
. C3A caT PWC2
(InA) | input
XB |Common
. C3B C3T PWC3
(InB) | input
XC [Common
. C6A CHOzZ
(InC) | input

-35-

AX series programmable controller software manual Module Configuration

Trigger Positive Pulse
Common gg and) Common .
. . latching . width . High-speed |Compare
input Counting negative input
. . and .. |measure . pulse output Output
function | function . limit function . .
Input Z-signal -ment |[Output function Function
(default) . zero . (default)
port function .| function | port
function
. . . Function
Function| Function | Function value is Function Function [Function value is| Function
value is 0| valueis 1 |valueis 2 3 value is 4 value is O 1 value is 2
XD |Common
. C6B CH1z
(InD) | input
XE [Common
. C7A CH2z
(InE) | input
XF |Common
. C7B CH3z
(InF) | input
Note:

® XO-XF is the input port and YO-Y7 is the output port.

® Common input and common output mean a common I/O signal, usually a switching signal.
® CxA, CxB, and CxZ are signals of encoder A, B, and Z respectively.

® CXxT refers to the trigger and latch function channel and supports 4 channels, COT-C3T.

® CHxP and CHxN refer to positive and negative limit signals, with N being the negative direction and P being
the positive direction. CHxZ refers to the zero signal.

® PWCx means pulse width check signal.

® CHXCW is a clockwise signal and CHxCCW is a counterclockwise signal.
® PULSx means pulse.

® SIGNx means the direction of the pulse.

® CMPx means the output comparison.
4.2.1.2 N-type model port configuration description

At present, AX7[J-C-1608N programmable controller integrates 16-channel high-speed pulse input (The first 4 channels
support differential input, and the last 12 channels support 24V single-ended input) and 8-channel high-speed pulse
output which supports pulse+direction mode, FWD/REV pulse mode and quadrature pulse mode, and each port can be
configured with different functions. The configuration table is shown as follows.

. Positive
Trigger Pulse
Common - and . Common .
. . latching . width . High-speed |Compare
input Counting negative input
i . and ... |measure . pulse output Output
function | function i limit function . .
Input Z-signal -ment |Output function Function
(default) . zero . (default)
port function .| function | port
function
. . . Function
Function| Function | Function value is Function Function [Function value is| Function
value is 0| valueis 1l |valueis 2 3 value is 4 value is 0 1 value is 2
A0 |Common YO |Common
. COA CHON CHOCW/PULSO| CMPO
(In0) | input (Out0) | output
BO |Common Y1l |Common
. COB CHIN CHOCCW/SIGNO| CMP1
(In1) | input (Outl) | output
Al |Common Y2 |Common
. Cl1A CH2N CH1CW/PULS1| CMP2
(In2) | input (Out2) | output

-36-

AX series programmable controller software manual Module Configuration

Trigger Positive Pulse
Common gg and) Common .
. . latching . width . High-speed |Compare
input Counting negative input
. . and .. |measure . pulse output Output
function | function . limit function . .
Input Z-signal -ment |[Output function Function
(default) . zero . (default)
port function .| function | port
function
. . . Function
Function| Function | Function value is Function Function [Function value is| Function
value is 0| valueis 1 |valueis 2 3 value is 4 value is O 1 value is 2
B1 |Common Y3 | Common
. CiB CH3N CH1CCW/SIGN1| CMP3
(In3) | input (Out3) | output
X4 |Common Y4 | Common
. C4A coz CHOP CH2CW/PULS2 | CMP4
(In4) | input (Out4) | output
X5 [Common Y5 | Common
. C4B Cilz CH1P CH2CCW/SIGN2| CMP5
(In5) | input (Out5) | output
X6 [Common Y6 |Common
. C5A c2z CH2P CH3CW/PULS3| CMP6
(In6) | input (Out6) | output
X7 |Common Y7 | Common
. C5B C3z CH3P CH3CCW/SIGN3| CMP7
(In7) | input (Out7) | output
X8 |Common
. C2A CoT PWCO
(In8) | input
X9 [Common
. C2B CiT PWC1
(In9) | input
X10 |Common
. C3A C2T PWC2
(InA) | input
X11 [Common
. C3B C3T PWC3
(InB) | input
X12 |Common
. C6A CHOz
(InC) | input
X13 |Common
. ceB CH1z
(InD) | input
X14 |Common
. C7A CH2z
(InE) | input
X15 |Common
. C7B CH3z
(InF) | input
Note:

e AO0/BO/A1/B1/X4-X15 is the input port and YO-Y7 is the output port.
e Common input and common output mean a common /O signal, usually a switching signal.

e A0/BO/AL/B1 is recommended not to be a normal input port. In special cases, if it is used as a normal input port, a
2K resistor needs to be connected in series in the circuit, otherwise the point will be burned out.

® CxA, CxB, and CxZ are signals of encoder A, B, and Z respectively.
® CxT refers to the trigger and latch function channel and supports 4 channels, COT-C3T.

® CHxP and CHxN refer to positive and negative limit signals, with N being the negative direction and P being
the positive direction. CHxZ refers to the zero signal.

® PWCx means pulse width check signal.
® CHxCW: is a clockwise signal and CHXCCW is a counterclockwise signal.
® PULSx means pulse.

® SIGNx means the direction of the pulse.

-37-

AX series programmable controller software manual Module Configuration

e CMPx means the output comparison.

4.2.2 Input port function description

The input port can be set to five functions, which are: common input function, counting function, triggering latch and
Z-signal function, positive and negative limit zero function, and pulse width measurement function. Here is the mapping
table of configuration input function corresponding to Inx_Configure parameters, where x ranges from 0 to F.

HIGH_PULSE_IO Parameters Find Filter Show all T
HIGH_PULSE_I0 1/0 Mapping Variable Mappi.. Channel Address Type Unit Descri...
"] In0_Cenfigure LHoBG BYTE
Status " Application.inl] In1_Cenfigure LHoBY BYTE
] Application.in2] In2_Configure LHoB2 BYTE
Information] Application.in3] In3_Cenfigure LHoB3 BYTE
] Application.in4] In4_Configure] BYTE
] Application.in5] In5_Cenfigure LHOBS BYTE
] Application.ing] In6_Configure LHoBE BYTE
] Application.in7] In7_Configure LHoBF BYTE
] Application.ind] Ind_Configure LHoBS BYTE
] Application.ing] In9_Configure LHoBS BYTE
] Application.inA] InA_Configure LHBie BYTE
] Application.inB] InB_Configure LHBr BYTE
] Application.inC "% InC_Configure LLoB12 BYTE
] Application.inD "% InD_Configure LLoB13 BYTE
] Application.inE "% InE_Configure LLoB BYTE
] Application.inF "% InF_Configure LLoBIS BYTE

For P-type model, the In0O_Configure—InF_Configure port function configuration parameters correspond to ports X0—XF in
turn.

For N-type model, the In0_Configure—InF_Configure port function configuration parameters correspond to ports
A0/BO/A1/B1/X4—X15 in turn.

HIGH_PULSE_IO Parameters Find Filter Show all -
HIGH_PULSE_I0 1/0 Mapping Variable Mappi.. Channel Address Type Unit Descri...
" " In0_Configure BLORG BYTE
Status] Application.in1 " In1_Configure BCORL BYTE
" Application.in2 k] In2_Configure SLORR BYTE
Information " Application.in3 k] In3_Configure SLORS BYTE
" Application.in4 Y In4_Configure SoEE4 BYTE
" Application.in5 k] In5_Configure SLORE BYTE
" Application.ing k] In6_Configure SLORE BYTE
" Application.in7 k] In7_Configure SLORF BYTE
" Application.ing k] In3_Configure SLORS BYTE
" Application.ing] InS_Configure LLEEG BYTE
" Application.ina k] InA_Configure SLOE48 BYTE
" Application.inB k] InB_Configure LOEHE BYTE
" Application.inC k] InC_Configure OB BYTE
"% Application.inD] InD_Configure QB2 BYTE
"% application.inE] InE_Configure LOB14 BYTE
" Application.inF k] InF_Configure BLOBES BYTE

4.2.2.1 Common input function
If the function value is 0, the signal port is configured to be used as a common input port.

Wiring of common input ports

Common input: P-type model

External wiring Port Function |CN5 terminal No.| Function Port External wiring

Common Common
X0] 40 39 . X1 —
input input

|+ +
24vDC .[38 37]_ 24vDC

COM Input 36 35 Input COM

-38-

AX series programmable controller software manual Module Configuration

Common input: P-type model

External wiring Port Function |CN5 terminal No.| Function Port External wiring
common common
port port
X2 Common 34 33 Common 3

input input L
32 31 |
*_' 24VDC
Input Input |

24vDC -|—J_[+

COM common 30 29 common COM
port port
Common Common
X4 28 27 X5

— input input L
| 26 25 |
24vDC + + 24VDC
| Input Input |

COM common 24 23 common COM
port port
= E N
T- =T - T
[T, L g —...2
24vDC 24VDC
— — Input Input —\-
| /] SS1 common 22 21 common SS2 L\
port port
L/ — e\
L/ — e \
Common input: N-type model
External wiring Port Function [CN5 terminal No.| Function Port External wiring
— — N\
) I N
L/ -
L/ Common Common]
— X4) X4 X5) X5 -
input input
L/ -
R Y gu— I N —
1
T- T
R 1....3

Configuration of common input ports
Define the variables to configure the ports and map them to the high-speed pulse mapping table.
Configuration routine:
1: Configure X4 port of P-type model and X4 port of N-type model as common input ports.
in4:=0;

B Application.ing i In4_Configure oE4 BYTE

2: Configure X5 port of P-type model and X5 port of N-type model as common input ports.

-390-

AX series programmable controller software manual Module Configuration

in5:=0;

" Application.in5 i In5_Configure BLORE BYTE

4.2.2.2 Counting function

If the function value is 1, the signal port is configured as a counter function and all 16 input ports can be used as counter
inputs.

Counting function module can count and calculate the input pulse, and detect the position, speed and frequency. The
maximum frequency of input pulse is 200kHz.

Wiring of counting function ports

Counting function (Single-end source): P-type model
External . . . External
. Port Function CNS5 terminal No. Function Port .
wiring wiring
COA Phase A pulse 40 39 Phase B pulse CoB
---J--|=- input input -J-!'---
L 38 37 i.I
| Input common Input common |
COM 36 35 COM
port port
Cl1A Phase A pulse 34 33 Phase B pulse C1B
---J--|=- input input -J-!‘---
L 32 31 ;.I
| Input common Input common |
COM 30 29 COM
port port
CaA Phase A pulse 28 97 Phase B pulse c4B
---J--IT- input input -=l--L---
_L 26 25 i].
| Input common Input common |
COM 24 23 COM
port port
I —
T T
ss1 Input common 29 21 Input common sS2
L) port port JL__]

-40-

AX series programmable controller software manual Module Configuration

Counting function (Single-end source): N-type model
External wiring| Port Function CN5 terminal No.| Function Port External wiring
Phase A pulse Phase B
Tl csaa eAP X4 X5 , x5 |dL.]
input pulse input
ES £
24vpC]- | Teavoc
Counting function (Single-end sink): P-type model
External . . . External
. Port Function CNS5 terminal No. Function Port .
wiring wiring
Input common Input common
COM 40 39 COM
port port
+ +
'[_ 38 37 .]'
___J_-_|=_ Phase A pulse Phase B pulse -J--L---
COA . 36 35 . CcoB
input input
Input common Input common
COM 34 33 COM
port port
+ +
'[_ 32 31 _]-
--.J.-.|=. Phase A pulse Phase B pulse .J.-.L.--
C1A . 30 29 . CiB
input input
Input common Input common
COM 28 27 COM
port port
A A4
'[_ 26 25 .]'
--.J.-.|=. Phase A pulse Phase B pulse -J-!'---
C4A) 24 23) C4B
input input
- <
ss1 Input common 29 21 Input common SS2
---:I.-.I:. port port .J.-.L.---

-A1-

AX series programmable controller software manual Module Configuration

Counting function (Single-end sink): N-type model
External wiring| Port Function |CN5terminal No.| Function Port |[External wiring
Phase A pulse Phase B pulse
|__dL| c4a AP X4 X5 e =P cas |JL__|
input input
24VDC |-+ +|-24VDC

Counting function (differential signal): P-type model

External . . . External
. Port Function CNS5 terminal No. Function Port .
wiring wiring
40 39
Phase A Phase B
COA+ . . 38 37 . . CcOoB+
differential + differential +
Phase A Phase B
COA- . . 36 35 . . COB-
differential - differential -
34 33
Phase A Phase B
Cl1A+ . . 32 31 . . Ci1B+
differential + differential +
Phase A Phase B
.y C1A- .) 30 29 . . C1B-
] differential - differential -
28 27
Phase A Phase B
C4A+)] 26 25 . . C4B+
‘ differential + differential +
e Phase A Phase B
P C4A- .) 24 23 . . C4B-
differential - differential - | |

Counting function (differential signal): N-type model

External .) . External
. Port Function CN5 terminal No. Function Port .
wiring wiring

Phase A pulse Phase B pulse A
C4A . X4 X5 . C4B
input input

Configuration of counting ports

Function value configuration:

Define the variables to configure the ports with data type BYTE, and map them to the high-speed pulse mapping table.
Configuration routine:

1) Configure X0 port of P-type model and A0 port of N-type model as counting ports.

in0:=1;

-42-

AX series programmable controller software manual Module Configuration

" Application.ind i@ In0_Configure oRG BYTE

2) Configure X1 port of P-type model and BO port of N-type model as counting ports.
inl:=1;
i Application.inl i Ini_Configure SLOEE BYTE
Configure other ports by analogy.
4.2.2.3 Trigger, latch and Z-signal function
If the function value is 2, the signal port is configured as trigger, latch and Z-signal functions.

The trigger function can preset count value for the counter and the rising edge of the trigger signal is valid. The preset
value will be written to the counter once the signal is valid. Normally there are three ways to write the preset value of the
counter: software writing, external trigger writing, and consistent comparison trigger writing. This product uses external
trigger writing.

The latch function can lock the counter value instantly for the upper computer to read.

The trigger and latch functions support 4 channels, COT-C3T (P-type model mapping ports X8, X9, XA, XB and N-type
model mapping ports X8, X9, X10, X11).

Z-signal function is used for Z clearing and Z compensation functions and Z-signal encoders generate one pulse per
revolution.

Z-signal function supports 4 channels, COT-C3T (mapping ports X4, X5, X6, X7)

Wiring of trigger, latch and Z-signal ports

Input function 3: (CnT wiring refers to common input; CnZ wiring refers to counting pulse input)
P-type model
External wiring Port Function |CN5terminal No.| Function Port | External wiring
Phase Z Phase Z
C0z single-ended 28 27 single-ended Clz
input input
Phase Z Phase Z
Coz+ differential 26 25 differential Clz+
input input
Input common Input common
COM 24 23 COM
port port
Input common Input common
SSs1 22 21 SS2
port port
c2z Z signal input| 20 19 Z signal input C3z
Probe signal Probe signal
coT . 18 17) CiT
input input
Probe signal Probe signal
c2T) 16 15) C3T
input input

-43-

AX series programmable controller software manual Module Configuration

Input function 3: (CnT wiring refers to common input; CnZ wiring refers to counting pulse input)
N-type model
External wiring| Port Function |CN5terminal No.| Function Port |[External wiring
Ccoz Z signal input X4 X5 Z signal input Clz
AL dL.
c2z Z signal input X6 X7 Z signal input C3z
JL)) JL
""" Probe signal Probe signal R
coT) X8 X9) CaT
L/ input input L\
Probe signal Probe signal
—~— C2T) X10 X11) C3T |—\4
input input
'-'Ir-':m : Input common Input common : ““:1'
ey SS P SS SS P SS — -
port port

Configuration of the trigger, latch and Z-signal ports

Function value configuration: Define the variables to configure the ports with data type BYTE, and map them to the
high-speed pulse mapping table.

Configuration routine:
1) Configure X8 port of P-type model and X8 port of N-type model as trigger and latch ports.
in8:=2;

T Application.ind i In8_Configure LLoRS BYTE
2) Configure X4 port of P-type model and X4 port of N-type model as Z-signal ports
in4:=2;

i Application.ing i In4_Configure] BYTE

4.2.2.4 Positive and negative limit zero function
If the function value is 3, the signal port is configured as positive and negative limit zero function.

CHxP/CHxXN/CHXxZ are positive limit, negative limit and zero signal functions on the x channel, where x ranges from 0 to 3.
The positive limit serves to limit the positive direction, where motor movement needs to stop or reverse. The negative limit
serves to limit the negative direction, where motor movement needs to stop or reverse.

Wiring of positive and negative limit zero ports

Input function 4: (CHnZ and CHnP wiring refers to common input; CHnZ wiring refers to counting
pulse input) P-type model

o . CNS5 terminal) .
External wiring Port Function N Function Port External wiring
0.
Negative limit Negative limit
CHON) 40 39 . CHIN _
-l_J— input input —
+ 38 37 .
| Input common Input common
COM 36 35 COM
port port
Negative limit Negative limit —\—
CH2N) 34 33) CH3N
+ input input 4l
T 32 31 T

-44-

AX series programmable controller software manual

Module Configuration

Input common Input common
COM 30 29 COM
port port
Positive limit Positive limit
CHOP) 28 27) CH1P
— input input —

+ 26 25 L
| Input common Input common |
COM 24 23 COM
port port
Input common Input common
SS1 22 21 SS2
port port
Positive limit Positive limit
CH2P i 20 19) CH3P
input input
CHO0Z | Home signal 14 13 Home signal | CH1Z
CH2z | Home signal 12 11 Home signal | CH3Z

pulse input) N-type model

Input function 4: (CHxZ and CHxP wiring refers to common input; CHxZ wiring refers to counting

. . CNS5 terminal . .
External wiring Port Function No Function Port External wiring
- Negative limit Negative limit -
2aVDC +2KQ CHON ot A0+ BO+ inout CHIN 2KQ 4 VDG
inpu inpu
| P P T

Input common Input
COM AO- BO- COM
EI:I—’ - port common port —
2avpe ¢ Negative limit Negative limit 29l vne
T | cHa2N o Al+ | Bl1+ o CH3N | T
input input
— — Input common Input —\—
COM Al- B1- COM
port common port
Positive limit Positive limit
CHOP . X4 X5 . CH1P
input input
Positive limit Positive limit
CH2P) X6 X7 . CH3P
JTL input input JL
X8 X9
JL JL
[P X10 xa |\ | oTEEEETeeT :n
. ey s "o s Y
T = g7
e CHOZ |Homesignal| X12 | X13 |Home signal| CH1Z Hhmmnn
CH2Z | Home signal | X14 X15 |Home signal| CH3z
Input common Input
SS SS SS SS
port common port

Configuration of positive and negative limit zero ports

Function value configuration:

Define the variables to configure the ports, and map them to the high-speed pulse mapping table.

Configuration routine:

1. Configure X3 port of P-type model and B1 port of N-type model as negative limit ports.

in3:=3;

"# Application.in3

In3_Configure

-45-

26083

BYTE

AX series programmable controller software manual Module Configuration

2. Configure XC port of P-type model and X12 port of N-type model as zero ports.
inC:=3;

" Application.inC i InC_Configure BLOE BYTE

4.2.2.5 Pulse width measurement function
If the function value is 4, the signal port is configured as a pulse width measurement function.

PWCx is a pulse width measurement input channel x, where x ranges from 0 to 3. The ports corresponding to P-type
model are X8, X9, XA and XB, and the ports corresponding to N-type model are X8, X9, X10 and X11.

Wiring of pulse measurement ports

Input function 5: (PWCn wiring refers to counting pulse input) P-type model

External wiring Port Function |CN5terminal No.| Function Port | External wiring
Input common Input common
SS1 22 21 SS2
port port

Pulse Pulse

PWCO |measurement| 18 17 measurement| PWC1
signal signal
Pulse Pulse

PWC2 |measurement| 16 15 measurement| PWC3
signal signal

Input function 5: (PWCn wiring refers to counting pulse input) N-type model

External wiring| Port Function CN5 terminal No.| Function Port |[External wiring
Pulse Pulse
PWCO | measurement X8 X9 measurement | PWC1
JL)) JL
""""" signal signal ===
.-J.-!'.. Pulse Pulse _J_-_|=__
PWC2 | measurement X10 X11 | measurement| PWC3
signal signal
X12 X13
£l xia | xis I
L —_..T
Input common Input common
SS SS SS SS
port port

Configuration of pulse width measurement ports

Function value configuration:

Define the variables to configure the ports, and map them to the high-speed pulse mapping table.
Configuration routine:

1. Configure X8 port of P-type model and X8 port of N-type model as a pulse width measurement port
in8:=4;

4 Application.ing i In3_Configure BLORS BYTE

2. Configure X9 port of P-type model and X9 port of N-type model as a pulse width measurement port.

-46-

AX series programmable controller software manual Module Configuration

in9:=4;

$ Application.ing i In2_Configure BYTE

4.2.3 Output port function description

The output port can be set for 3 functions: common output function, high-speed pulse output function and output
comparison function.

4.2.3.1 Common output function

If the function value is O, the signal port is configured to be used as a common output port. The following are the
parameters of Outx_Configure in the mapping table of the configuration output function, where the range of x is 0-7.

| HIGH_PULSE_IO Parameters Find Filter Show all =
HIGH_PULSE 10 1/0 Mapping Variable Mappi... Channel Address Type Unit Descri..
" Application, xmodec " ¥Mode_SetC SLOEE BYTE
Status "4 Application. xmoded " %Mode_SetD REts BYTE
" application. filt_set " Filt_Set SOE28 BYTE
Information " Application. outd " COutd_Configure o2t BYTE
" Application. out1 " QOutl_Configure LR BYTE
"# Application.out2 " Qut2_Configure %OB23 BYTE
"% application.out3 " Out3_Configure %0E24 BYTE
" Application. out4 " Cut4_Configure S0B25 BYTE
" Application, out5 " Qut5_Configure LLOE2E BYTE
"4 Application. outs " Quts_Configure LOB2F BYTE
" Application.out? " Out7_Configure OE28 BYTE
Wiring of common output ports
Common port: P-type model
External wiring Port Function |CNS5 terminal No.| Function Port External wiring
Common Common
YO 10 9 Y1l
output output
Load Load
— Y Common 8 2 Common v3 ——
Load 2 output output Load
., T— — L, T—
Common Common
Load Y4 6 5 Y5 Load
— output output —_—
Load Common Common Load
Y6 4 3 Y7
24VDC Fuse output output Fuse 24VDC
=I5 Output Output e L
COM common 2 1 common COM
port port
Common port: N-type model
External wiring Port Function |CN5 terminal No.| Function Port External wiring
Fuse Fuse
—I —— ——— I—
Load Load
— ——
Load OUtpUt Output Load
—{—J}—— COM common COM COM coM T
Load port common port Load
T S— —, T
Load Load
-, N— —T]—

The output port of P-type model contains 8 output signals. Only single-ended outputs are supported, and the signal type is
source type output. YO, Y2, Y4 and Y6 share the common port COM1, and Y1, Y3, Y5 and Y7 share the common port

A7-

AX series programmable controller software manual Module Configuration

COM2.

The output port of N-type model contains 8 output signals. Only single-ended outputs are supported, and the signal type is
sink type output. YO-Y7 share the common port COM2.

Configuration of common output ports

Function value configuration:

Define the variables to configure the ports and map them to the high-speed pulse mapping table.
Configuration routine:

1. Configure YO as a common output port.

out0:=0;

g Application, outd i Qutd_Configure 2oF2+ BYTE

2. Configure Y1 as a common output port.
outl:=0;

~a

i Application. outl [] Qutl_Configure OoEa1 BYTE
4.2.3.2 High-speed pulse output function

If the function value is 1, the signal port is configured as a high-speed pulse output function, and all 8 output ports can be
configured for high-speed pulse output.

The high-speed pulse output support pulse + direction, FWD/REV pulse, and quadrature pulse modes.

Wiring of high-speed pulse output ports

Output pulse: P-type model

CNS5 terminal

External wiring Port | Function No Function Port External wiring
Encoder0 FUIse + PlusO Pulse 10 9 Direction Sign0 Directiont £, codero
Pulse - o output output ¢! Direction-

- Plusi Pulse 8 7 Direction Signi
output output
Pulse Direction .
Plus2 6 5 Sign2
- output output | ¢ ‘-
Pulse+ Pulse Direction . Direction+
Encoder3 irection
Pulse- [d Plus3 output 4 3 output Sign3 | Direction- Encoder 3
Output Output
COM | common 2 1 common COM
port port
[
24vDC
T

-48-

AX series programmable controller software manual Module Configuration

Output pulse: N-type model
.. . CN5 terminal . L.
External wiring Port Function N : Function Port External wiring
Output Output
| COM | common | COM | COM | common [COM
port port
Pulse+ Pulse Direction . Direction+
Encoder0 pce. PlusO output YO Y1 output Sign0 Direction- Encoder 0
- Plusl Pulse Y2 Y3 Direction Signt
output output
Plus? Pulse va Y5 Direction Sign2
output output
Pulse+ [Pulse Direction . P=1 Direction+
Encoder3 ..’ Plus3 output Y6 Y7 output Sign3 Direction- Encoder 3
_Jl‘T 24vDC

Configuration of high-speed pulse output ports

Function value configuration:

Define the variables to configure the ports, and map them to the high-speed pulse mapping table.
Configuration routine:

1. Configure YO as a high-speed pulse output port.

out0:=1;

i Application. outd i Outd_Configure LoE2: BYTE
2. Configure Y1 as a high-speed pulse output port.
outl:=1;

i Application.outl i Outl_Configure LoE22 BYTE

4.2.3.3 Output comparison function
If the function value is 2, the signal port is configured as an output comparison function with 8 channels.

The output comparison outputs the result of the counter single value comparison, and each counter channel has an output
comparison function. If the counter value is equal to the set comparison value, it will output high, and if it is not equal, it will
output low.

Wiring of output comparison ports

Comparison consistent output: P-type model
External wiring Port Function |CN5 terminal No.| Function Port External wiring
Common Common
YO 10 9 Y1
output output
Load Load
— Common Common e S
Y2 8 7 Y3
Load output output Load
— Common Common —
Load Y4 6 5 Y5 Load
— output output (R o
Load Common Common Load
Y6 4 3 Y7
24VDC output output 24\I/DC
I Output Output 1
COM common 2 1 common COM
port port

-49-

AX series programmable controller software manual Module Configuration

Comparison consistent output: N-type model
External wiring Port Function |CN5 terminal No.| Function Port External wiring
Output
Output
COM common COM COM COM
Fuse common port Fuse
= port |
Load YO Common v1 Common v1 Load
—{J—
Lond output output _—
—{J— Common Common — T
Load e output e 3 output 3 Load
—— P P ——
Common Common
Load Y4 Y4 Y5 Y5 Load
— output output e}
Common Common
Y6 Y6 Y7 Y7
output output

Configuration of output comparison ports

Function value configuration:

Define the variables to configure the ports, and map them to the high-speed pulse mapping table.
Configuration routine:

1. Configure YO as a comparison output port.

out0:=2;

T Application, outd i Qutd_Configure 2OoE1+ BYTE
2. Configure Y1 as a comparison output port.
outl:=2;

T Application. outl i Outl_Configure Lopa2 BYTE

4.2.4 High-speed 1/0 mapping table

The device profile Shenzen INVT-AX7X-CPU_x.x.x.x.devdes is a CPU device profile that contains description of the
high-speed counting function, which is used for functional configuration of the input and output ports as well as the use
and configuration of the interrupt function. See the following table.

Serial) Input/out .
Variable Data type Meaning
No. put type
1 Gpi_Value IN Word 16-Channel general input feedback
FPGA version number.
. bit6—bit7: major version.
2 Version_FPGA IN BYTE))))
bit3—bit5: minor version.
bit0-bit2: revision number.
3 In0_Configure IN BYTE . .) .
Input terminal function configuration
4 In1_Configure IN BYTE 0: Standard input function
5 In2_Configure IN BYTE 1: Counting function
6 In3_Configure IN BYTE 2: Trigger, latch and zero-signal function
7 In4_Configure IN BYTE 3: Positive and negative limit zero
8 In5_Configure IN BYyTE | runction

-50-

AX series programmable controller software manual Module Configuration

Serial . Input/out .
Variable Data type Meaning
No. put type
9 In6_Configure IN BYTE 4: Pulse width measurement function
10 In7_Configure IN BYTE
11 In8_Configure IN BYTE
12 In9_Configure IN BYTE
13 InA_Configure IN BYTE
14 InB_Configure IN BYTE
15 InC_Configure IN BYTE
16 InD_Configure IN BYTE
17 InE_Configure IN BYTE
18 InF_Configure IN BYTE
Counting function configuration for
channel 0 (bit0-bit3), channel 1(bit4-bit7):
0: Single pulse
19 XMode_SetA ouT BYTE 1: Quadrature encoder pulses (QEP)
2: Timing
3: SIGN+PULS
Counting function configuration for
channel 2 (bit0-bit3), channel 3(bit4-bit7)
0: Single pulse
20 XMode_SetB ouT BYTE 1: Quadrature encoder pulses (QEP)
2: Timing
3: SIGN+PULS
Counting function configuration for
channel 4 (bit0-bit3), channel 5(bit4-bit7)
0: Single pulse
21 XMode_SetC ouT BYTE 1: Quadrature encoder pulses (QEP)
2: Timing
3: SIGN+PULS
Counting function configuration for
channel 6 (bit0-bit3), channel 7(bit4-bit7)
0: Single pulse
22 XMode_SetD ouT BYTE
1: Quadrature encoder pulses (QEP)
2: Timing
3: SIGN+PULS
. Input signal filter parameter setting (unit:
23 Filt_Set ouT BYTE
0.25us)
24 Out0_Configure ouT BYTE
25 Outl_Configure ouT BYTE
26 Out2_Configure ouT BYTE Output terminal function configuration
] 0: Common output function
27 Out3_Configure ouT BYTE
1: High-speed pulse output function
28 Out4_Configure ouT BYTE))
2: Comparison output function
29 Out5_Configure ouT BYTE 3_255: Reserved
30 Out6_Configure ouT BYTE
31 Out7_Configure ouT BYTE

-51-

AX series programmable controller software manual Module Configuration

Serial . Input/out .
Variable Data type Meaning
No. put type
32 GPO_Set ouT BYTE Common output signal setting bit0-bit7
bit0: Output channel 0 (1: enabled, O:
disabled)
bitl: Output channel 1 (1: enabled, O:
disabled)
33 Run_Enable ouT BYTE bit2: Output channel 2 (1: enabled, O:
disabled)
bit3: Output channel 3 (1: enabled, O:
disabled)
bit6—bit7: Reserved.
34 YMode_Set ouT BYTE Reserved
35 Interrupt ouT BOOL Global interrupt enable
Interrupt enable
bit0: Interrupt 0 enable
36 Interrupt_Enable ouT DWORD bitl: Interrupt 1 enable
bit19: Interrupt 19 enable
Interrupt mode
bit0-bit1: X0 interrupt mode
bit2-bit3: X1 interrupt mode
bit4-bit5: X2 interrupt mode
bit6-bit7: X3 interrupt mode
bit8-bit9: X4 interrupt mode
bit10-bit11: X5 interrupt mode
bit12-bit13: X6 interrupt mode
37 Interrupt_Mode ouT DWORD . . .

PL bit14-bit15: X7 interrupt mode
bit16-bit17: Probe 0 interrupt mode
bit18-bit19: Probe 1 interrupt mode
bit20- bit21: Probe 2 interrupt mode
bit22-bit23: Probe 3 interrupt mode
0: rise edge
1: fall edge
2: Two edges

The operation interface of Invtmatic Studio is displayed as follows:
Devices a2 x ‘3 HIGH_PULSE_TIO x g8 Task 4 LatchValue & Task 5 Zphase_Compensate % ManTask & Task3 v ||Prop
=5 hsio_demo2000 hd N) TE
=) Cevice (00T 8070 HIGH_PULSE_IO Parameters Find Filter Show all - 8l
=Bl PLC Logic HIGH_PULSE 10 10 Mapping Variable Mappi.. Channel Address Type Unit Descri... Tﬂl
+ 1L} Application #- 4 application.Input_V... T Gpi_Value IS WORD
"3 HIGH_PULSE_IO Status 4y npplication.version_... % Version_FPGA %182 BYTE
"3 SoftMotion General Axis Pool " Application.ind "% In0_Configure %988 BYTE
Infarmation "4 Application.ini "% InlConfiqure %gB: BYTE
" Application.in2 % In2_Configure %082 BYTE
"% Application.in3 "% In3_Configure %OEF BITE
" Application.in4 "% Ind_Configure %EE4 BYTE
" Application.in5 % InS_Confiqure %GBS BYTE
i Application.inG % Ind_Configure %086 BYTE
" Application.in? "% In7_Confiure %gB7 BYTE
" Application.ing "% In3_Configure %oEE BYTE
i Application.ing b In9 Confiqure HOEG BYTE
l:| Reset Mapping Always updatevariables | Enabled 2 (always in bus cyde task)
§p = Create new variable " =Mapto existingvariable
Bus Cyde Options
Bus cycle task Task hd

4.2.4.1 General input value

The variable corresponding to the device profile is Gpi_Value with the data type of WORD. This parameter is used when
the input signal is set to the common input function. The input signals corresponding to the bits of the variable Gpi_Value
are shown in the following table.

-52-

AX series programmable controller software manual Module Configuration

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XF | XE | XD | XC | XB | XA | X9 | X8 | X7 | X6 | X5 | X4 | X3 | X2 | X1 | X0

If you need to read a common input signal, you can use either WORD mapping or bit mapping.
In WORD variable mapping mode, 16 input signal values can be read at the same time.

+- 4@ application.Input_Value i Gpi_Value L1E T WORD

In Bit mapping mode, one variable can only read one signal value, and the variable type is BOOL.

- Gpi_Value SLIWWO WORD
4% Application. xn0_Bit T BitO BTG-S BOOL
. Bit1 BLIX0. 1 BOOL
g Bit2 SpIND, 2 BOOL
3 Bit3 SLIX0. 3 BOOL

4.2.4.2 Version

The variable corresponding to the device profile is Version_FPGA with data type BYTE. It is used to read the FPGA
version, where bit6—bit7: major version, bit3—bit5: minor version, bit0-bit2: revision number.

4

“% application. version_fpga [] Version_FPGA 2R BYTE

4.2.4.3 Input terminal function configuration

Configure the function of the input port with data type BYTE. There are 16 input ports that can be configured for 5
functions. Including standard input function, counting function, triggering, latching, and Z-signal function, positive and
negative limit zero function, and pulse width measurement function.

~

] Application.ind [] Ind_Configure EoBS BYTE

T Application.in1 k] In1_Configure BLOEE BYTE
T Application.in2 " In2_Configure SoE2 BYTE
" Application.in3 " In3_Configure OB BYTE
] Application.ing k] In4_Configure EoEd BYTE
T Application.in5 " In5_Configure BLOES BYTE
T Application.ing k- InG_Configure OB BYTE
] Application.in7 " In7_Configure SRR BYTE
P Application.ing " In&_Configure ot BYTE
] Application.ind T In9_Configure BLOES BYTE
T Application.inA k- InA_Configure SLOES BYTE
] Application.inB " InE_Configure SR BYTE
" Application.inC i InC_Configure SRR BYTE
] Application.inD k] InD_Configure = BYTE
T Application.inE k] InE_Configure REOEES BYTE
T Application.inF " InF_Configure SLOES BYTE

4.2.4.4 Counting mode configuration

There are 4 variables to configure the counting mode with the data type BYTE. Each variable can be configured for the
counting mode of 2 channels. A total of 8 counter modes can be configured. See the following figure.

T Application, xmodea Cip ¥Mode_Seta BLOELE BYTE
i Application, xmodeb i ¥Mode_SetB BT BYTE
i Application, xmodec i ¥Mode_SetC BB BYTE
i Application, xmoded i ¥Mode_SetD BB BYTE

Use 4 bits to set the counter mode with the following values:

-53-

AX series programmable controller software manual Module Configuration

Bit Counting mode
0 Single pulse

1 Quadrature encoder pulses

2 Timing counting

3 Pulse + direction

Configure the bits of XMode_SetA to set the mode of different counters.

Counter 1 Counter O

Configure the bits of XMode_SetB to set the mode of different counters.

Counter 3 Counter 2

Configure the bits of XMode_SetC to set the mode of different counters.

Counter 5 Counter 4

Configure the bits of XMode_SetD to set the mode of different counters.

Counter 7 Counter 6

4.2.4.5 Filter parameters

The variable of the corresponding device profile is Filt_Set in 0.25us, which sets the filter parameters of input and output
signals, with the data type BYTE and the maximum filter width 64pus. Adjust this parameter to improve the anti-interfere of
the signal.

If the signal interference is strong, set the parameter value larger. If the interference is weak, set it smaller. The filter
parameters are usually set to 1/4-1/3 (no more than 1/2) of the reference width which is the smaller one of the high pulse
and low pulse width. The upper limit is 64ps. A parameter value that is too large will filter out the effective pulses, while a
value that is too small may not filter out the clutter effectively.

4

i Application. filt_set [} Filt_Set OB BYTE
4.2.4.6 Output terminal function configuration

Configure the function of the output port with data type BYTE. There are 8 output ports that can be configured for 3
functions. For details, see the output port function description.

i Application, outd i Outd_Configure SRRt BYTE
T Application.out1 i Qutl_Configure SooEan BYTE
i Application.out? i Qut?_Configure) BYTE
i Application. out3 i Out3_Configure BLoE24 BYTE
T Application.out4 i Qut4_Configure BLOREAs BYTE
T Application, out5 i Qut5s_Configure) BYTE
T Application. outd i Outé_Configure BT BYTE
i Application.out? " Qut?_Configure) BYTE

-54-

AX series programmable controller software manual Module Configuration

4.2.4.7 Common output value

Common means the common function output. The variable corresponding to the device profile is GPO_Set with the data
type of BYTE. This parameter is used when the output signal is set to the standard output function. The output signals
corresponding to the bits of the variable GPO_Set are shown in the following table.

7 6 5 4 3 2 1 0
Y7 | Y6 | Y5 | Y4 | Y3 | Y2 | Y1 | YO

If you need to set a common output signal, you can use either BYTE mapping or bit mapping.

In BYTE variable mapping mode, 8 output signal values can be set at the same time.
+- T Application, QutPut_Byte i Gpo_Set BLORAD BYTE

In Bit mapping mode, one variable can only set one signal value, and the variable type is BOOL.

=" Gpo_Set 2%0QB29 BYTE
"$ Application.Yn0_Bit "% BitD %o¥08 BOOL
g Bit1 %QX29.1 BOOL
" Bit2 %QX23.2 BOOL

4.2.4.8 High-speed pulse output function

The variable corresponding to the device profile is Run_Enable with the data type of BYTE. This parameter is used for
channel enable at high-speed pulse output. The bits of the variable Run_Enable corresponds to the channel enable, 1
indicates enabled, 0 indicates disabled. The following table shows the correspondence between channels and bits.

7 \ 6 \ 5 | 4 3 2 1 0
Reserved Channel 3 Channel 2 Channel 1 | Channel 0

4.2.4.9 Global interrupt enable

The variable corresponding to the device profile is Interrupt, which is the master switch that enables all interrupts, with the
data type of BOOL. 1 indicates total interrupt enabled and 0 indicates disabled.

Serial No. Variable Input/output type Data type Meaning
35 Interrupt ouT BOOL Global interrupt enable

4.2.4.10 Interrupt enable

The variable corresponding to the device profile is Interrupt_Enable with the data type of DWORD. HSIO supports 20
types of interrupts, including 8 external input interrupts, 8 count-comparison interrupts, and 4 probe interrupts, each of
which can be enabled with the bit of Interrupt_Enable. The mapping is shown in the following table.

19\18]17\16 15\14]13\12\11]10\9 \8 7 \6 \5 \4 \3 \2 \1 \0
Probe interrupt

Comparison interrupt enable External interrupt enable
enable

BitO—bit7 corresponds to external interrupt 0—7 respectively.
Bit8—bit15 corresponds to comparison interrupt 0—7 respectively.
Bit16-bit19 corresponds to probe interrupt 0—3 respectively.

4.2.4.11 Interrupt mode

The variable corresponding to the device profile is Interrupt_Mode with the data type of DWORD. Only external interrupts
and probe interrupts require an interrupt mode. Each mode consists of 2 bits. The mapping of interrupt modes and bits is
shown in the following table.

-55-

AX series programmable controller software manual Module Configuration

15\1413\12 11\10 9\8 7\6 5\4 3\2 1\0
External External External External External External External External

interrupt 7 | interrupt 6 | interrupt5 | interrupt4 | interrupt3 | interrupt2 | interruptl | interrupt O

23 22 21 20 19 18 17 16
Probe interrupt 3 Probe interrupt 2 Probe interrupt 1 Probe interrupt O

Use 2 bits to set the interrupt mode with the following values:

Motion mode configuration Motion mode
0 Rising edge
1 Falling edge
2 Two edges

4.2.5 Interrupt instruction

The HSIO supports 20 types of interrupts, including 8 external input interrupts, 8 count-comparison interrupts and 4 probe
interrupts. To use the interrupt function, configure the corresponding IO port function. Then, enable the global interrupt
and the required interrupt bits. If an external input interrupt or probe interrupt is used, the interrupt mode must also be set.

4.2.5.1 External interrupt instruction

The corresponding input port numbers for P-type model external interrupts are X0—X7, and the corresponding input port
numbers for N-type model external interrupts are AO/BO/A1/B1/X4—X7. Configure these ports as common input ports, set
an interrupt mode to enable interrupts, and configure the interrupt task so that the operations can be performed in the
interrupt task.

External interrupt configuration

Follow the steps to implement the interrupt function:
Step 1 Set the input terminal as standard input function
For details, see Input terminal function description.
Step 2 Set global interrupt

Set Interrupt to true. See Global interrupt enable in the device profile parameter description.

Serial . Input/output .
Variable Data type Meaning
No. type
35 Interrupt ouT BOOL Global interrupt enable

Step 3 Set input port interrupt

Set the 8 input port bits of the Interrupt_Enable the device profile, with Gpix of input port x set to true. Set a bit to enable
the interrupt function mapping to that bit.

-56-

AX series programmable controller software manual Module Configuration

= i Interrupt_Enable %009 DWORD
" Gpi0 %QX36.0 BOOL
i Gpil %0X36.1 BOOL
" Gpiz %0X36.2 BOOL
" Gpi3 %QX35.3 BOOL
i Gpi4 %0X36.4 BOOL
" Gpi5 %0X36.5 BOOL
" Gpi6 %Q¥36.6 BOOL
" Gpi7 %0X36.7 BOOL

Step 4 Set interrupt mode

The interrupt mode setting consists of 2 bits, and different interrupts correspond to different bits. For details, see Interrupt
mode in the device profile parameter description.

Step 5 Select interrupt task

In the Invtmatic Studio task, set the type to External, and select the event inxInterrupt of the input port X0—X7, where x
ranges from O to 7.

g 2 MainTask % 8+ Y 82 FD HF] MChome i 1

Configuration

Priority { 0..31)z |2

Type

| E4 External v| External event |indInterrupt
in1Interrupt

Watchdog in2Interrupt
in3Interrupt

[]Enable indInterrupt
inSInterrupt

Time (e.g. t#200ms) inGInterrupt
inFInterrupt

An external signal generates an interrupt based on the interrupt mode and calls the corresponding task execution.

External interrupt timing

/
GPIx Interrupt ~ /y
falling edge(-
valid \ T VT S —
s rising edge
Interrupt(] valid
Upper computer Upper computer
interrupt processing \ interrupt processing

Interrupt_clean(]

Figure 4-1 External input interrupt timing

GPIx represents the xth external general input channel where 0 =< x <= 7, and Interrupt[] is the interrupt state output of
GPIx. The high-level pulse output by Interrupt[] uses a dotted line to indicate that interrupts can be output only if the
interrupt mode is valid and the interrupt enable is valid. The upper computer interrupt process and the interrupt_clean(]
signal only appear after the output of the Interrupt[], so they are also presented as dotted lines. Interrupt_clean(] is the
clear signal given by the upper computer in response to the Interrupt[], which clears the Interrupt[] to zero.

-57-

AX series programmable controller software manual Module Configuration

4.2.5.2 Probe interrupt instruction

The corresponding input port numbers for P-type model probe interrupts are X8—XB (i.e. CxT, 0 =< x <= 3), and the
corresponding input port numbers for N-type model probe interrupts are X8—X11. The input port signal function should be
configured as a latching function.

Probe interrupt wiring

External wiring Port Function [CN5 terminal No.| Function Port | External wiring
Input common Input common
SS1 22 21 SS2
Al Fa— port port I
T m T v
Probe signal Probe signal
- COoT . 18 17) cit [—
input input
— Probe signal Probe signal —
c2T) 16 15) C3T
input input
Probe interrupt configuration
Follow the steps to implement the interrupt function:
Step 1 Set the input terminal as latching function.
For details, see Input terminal function description.
Step 2 Set global interrupt.
Set Interrupt to true, see Global interrupt enable in the device profile parameter description.
Serial No. Variable Input/output type | Data type Meaning
35 Interrupt ouT BOOL Global interrupt enable

Step 3 Set input port interrupt.

Set the 4 input port bits of the Interrupt_Enable the device profile, with Trigx of input port x set to true. Set a bit to enable
the interrupt function mapping to that bit.

"% Application.P... i Trigd SLoN3a.8 BOOL
g] Application.P... i Trigl B BOOL
i Application.P... i Trig2 e BOOL
"% Application.P... i Trig3 SLONzE. 3 BOOL

Step 4 Set interrupt mode.

The interrupt mode setting consists of 2 bits, and different interrupts correspond to different bits. For details, see Interrupt
mode in the device profile parameter description.

Step 5 Select interrupt task.

In the Invtmatic Studio task, set the type to External, and select the event prbxInterrupt of the input port X8—XB (X8—X11),
where x ranges from 0 to 3. Read the probe latching value in the LatchValue_HP function block via the interrupt task flag.

-58-

AX series programmable controller software manual Module Configuration

e PulseCounter @ MainTask X ﬂ GVL_Param m

Configuration

Priority { 0.31): 1

Type
External W External event: |inOInterrupt
indInterrupt
inlInterrupt
Watchdog in2Interrupt
in3Interrupt
[1Enable indInterrupt
in5SInterrupt
Time (e.g. t#£200ms): inéInterrupt
in7Interrupt
itivity: 1 cmpOInterrupt
Sensitivity amp1Interrupt
cmp2Interrupt
cmp3Interrupt
cmpdInterrupt
Add Call X R Call [f Change mP2Interrupt
a5 all ¥ Remove Call & angEu‘anInt&rrupt
cmp7Interrupt
POU
prbiInterrupt
PulseCounter prb2Interrupt
prb3Interrupt

An external signal generates an interrupt based on the interrupt mode and calls the corresponding task execution.

Probe interrupt timing

4
CxT Interrupt)
falling edge | - . N
valid \ nerrupt - N\
SN rising edge &
Interrupt(] vaild ‘
Upper computer Upper computer
interrupt processing \ interrupt processing \

Interrupt_clean(]

Figure 4-2 Probe input interrupt timing

CXT represents the xth probe input channel where 0=<x<=3, and Interrupt[] is the interrupt state output of CxT. The
high-level pulse output by Interrupt[] uses a dotted line to indicate that interrupts can be output only if the interrupt mode is
valid and the interrupt enable is valid. The upper computer interrupt process and the interrupt_clean[] signal only appear
after the output of the Interrupt[], so they are also presented as dotted lines. Interrupt_clean(] is the clear signal given by
the upper computer in response to the Interrupt[], which clears the Interrupt[] to zero.

4.2.5.3 Comparison interrupt instruction

Comparison interrupt includes single-value comparison interrupt and multi-value comparison interrupt. Single-value
comparison interrupt is generated by calling the function block CompareSingleValue_HP, and multi-value comparison
interrupt is generated by calling CompareMoreValue_HP. The following steps describe the generation of single-value
interrupt and multi-value interrupt respectively.

Comparison interrupt configuration
e Single-value comparison interrupt:
1: Set the input terminal as counting function.
For details, see Input terminal function description.

2: Set global interrupt.

-590-

AX series programmable controller software manual Module Configuration

Set Interrupt to true, see Global interrupt enable in the device profile parameter description.

Serial No. Variable Input/output type Data type Meaning

35 Interrupt ouT BOOL Global interrupt enable

3: Set input port interrupt.

Set the 8 input port bits of the Interrupt_Enable the device profile, with Compx of input port x set to true. Set a bit to
enable the interrupt function mapping to that bit.

Variable Mapping Channel Address Type
T Application.P... k] Comp0 B] BOOL
i Application.P... " Comp1 SO BOOL
4§ Application.P... i Comp2 EIRa e BOOL
"$ Application.P... i Comp3 SLOMaF3 BOOL
"$ Application.P... i Comp4 LOM3I74 BOOL
"$ Application.P... i Comps SoMIEE BOOL
4§ Application.P... i Compé BLONITE BOOL
4§ Application.P... i Comp? LIRa e BOOL

4: Set the comparison interrupt output.
If comparison interrupt output is not needed, skip this step.

Select the port to be output, set the corresponding port in the device profile as the comparison output function, and
select any one of the following 8 channels through the single-value comparison function block
CompareSingleValue_HP parameter OutChannel. The OutChanne value ranges from 0 to 7. One output channel
OutChannel value can only correspond to one CMP channel.

i Standard . . Comparison
Output terminal i High-speed pulse output function i
output function output function
General
YO CHOCWI/PULSO CMPO
Common 0
Y1 Common 1 CHOCCWY/SIGNO CMP1
Y2 Common 2 CH1CW/PULS1 CMP2
Y3 Common 3 CH1CCWY/SIGN1 CMP3
Y4 Common 4 CH2CW/PULS2 CMP4
Y5 Common 5 CH2CCWY/SIGN2 CMP5
Y6 Common 6 CH3CW/PULS3 CMP6
Y7 Common 7 CH3CCWI/SIGN3 CMP7

5: Select interrupt task.

In the Invtmatic Studio task, set the type to External, and select cmpxInterrupt, where x ranges from 0 to 7.

-60-

AX series programmable controller software manual

Module Configuration

e PulseCounter @ MainTask X ﬂ GVL_Param
Configuration
Priority { 0.31) |1
Type
External w External event: |cmpOInterrupt
inQInterrupt
inlInterrupt
Watchdog in2Interrupt
in3Interrupt
[]Enable in4Interrupt
in5Interrupt
Time {e.g. t#£200ms): inGInterrupt
in7Interrupt
Sensitivity: 1 mm ot |
Ens cmplInterrupt
cmp2Interrupt
cmp3Interrupt
cmp4Interrupt
Add Call ¥ R Call [ChanggmPoINterrupt
gk all ¥ Remove Call [angEI:mDEInterrupt
[s cmp7Interrupt

If the comparison value is equal, an interrupt is generated and the corresponding task execution is called. The
channel x corresponds to the cmpxInterrupt comparison interrupt task and cannot be modified at will.

6: Call function block to generate interrupt

Single-value comparison calls the function block CompareSingleValue_HP to generate an interrupt. Setting the

comparison value to be the same as the count value can also generate an interrupt output.

Multi-value comparison interrupt:

1: Set the input terminal as counting function

For details, see Input terminal function description.

2: Set global interrupt

Set Interrupt to true, see Global interrupt enable in the device profile parameter description.

Serial No.

Variable

Input/output type

Data type

Meaning

35

Interrupt

ouT

BOOL

Global interrupt enable

3: Set input port interrupt

Set the 8 port bits of the Interrupt_Enable the device profile, with Compx of port x set to true. Since a multi-value
comparison function block can be used to generate multiple interrupts, the first value is the enable bit of Cmp0
interrupt, the second value is the enable bit of Cmpl interrupt, and so on, and the eighth value is the enable bit of

Cmp7 interrupt. It cannot be modified arbitrarily.

Variable

Mapping Channel

4§ Application.P...
"é application.p. ..
"# Application.P...
"§ Application.P...
"$ Application.P...
"$ Application.P...
& application.p. ..
"# Application.P...

—

L4

@ e @ e e e e

Comp0
Compl
Comp2
Comp3
Comp4
Comp5
Compo
Comp7

-61-

Address

Type
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL

AX series programmable controller software manual Module Configuration

4: Select interrupt task

In the Invtmatic Studio task, set the type to External, and select cmpxInterrupt, where x ranges from 0 to 7.

e PulseCounter Qﬁ MainTask X ﬂ GVL_Param

Configuration

Priority { 0..31): |1

Type
External e External event: |cmpOInterrupt
indInterrupt
in1Interrupt
Watchdog in2Interrupt
in3Interrupt
[Enable indInterrupt
in5SInterrupt
Time {e.q. t£200ms): inGInterrupt
inFInterrupt
Sensitivity empiInterrupt
cmp2Interrupt
cmp3Interrupt
cmp4Interrupt
Add Call ¥ R Call [# Changg™mPInterrupt
CH all > Remove Call [& angEmpGInterrupt
[s cmp 7Interrupt

The multi-value comparison function block has multiple comparison values, each of which corresponds to an
interrupt enabled bit of Compx. It shares a one-to-one mapping with the interrupt task cmpxinterrupt where x ranges
from O to 7 and cannot be modified at will.

5: Call function block to generate interrupt

Multi-value comparison calls the function block CompareMoreValue_HP to generate an interrupt. Setting the
comparison value to be the same as the count value will generate an interrupt output. For now, only eight
comparison values are supported for multi-value comparisons to generate interrupts, that is, the first eight values of
a multi-value comparison can generate interrupts.

Comparison interrupt timing
e Single-value comparison interrupt

Cnt[x]CvEqPVv /H T

\ {
Interrupt Interrupt _
enabling _ enabling g

Interrupt[] valid valid

Upper computer Upper computer
interrupt processing \ interrupt processing

Interrupt_clean]]

Figure 4-3 Single-value comparison interrupt timing

Cnt[x]CvEQPvV represents the single-value comparison signal of the xth counting channel, in which 0 =< x <= 7. A high
pulse indicates that cv and pv are equal. Interrupt[] is the interrupt state output corresponding to Cnt[x]CVEgPv. The
high-level pulse output by Interrupt[] uses a dotted line to indicate that interrupts can be output if the interrupt enable is
valid. The upper computer interrupt process and the interrupt_clean[] signal only appear after the output of the Interrupt(],
so they are also presented as dotted lines. Interrupt_clean(] is the clear signal given by the upper computer in response to
the Interrupt([], which clears the Interrupt[] to zero.

-62-

AX series programmable controller software manual Module Configuration

e Multi-value comparison interrupt

Cnt[x]CVvEqPV]y] /H T

Interrupt\ Interrupt \ 77777777777777
enabling ! enabling “4f T
Interrupt[] valid valid
Upper computer Upper computer
interrupt processing \ interrupt processing \

Interrupt_clean(]

Figure 4-4 Multi-value comparison interrupt timing

Cnt[x]CvEQgPV[y] represents the yth comparison value signal of the xth counting channel, in which 0=<x<=3 and 0=<y<=7.
A high pulse indicates that cv and pv are equal. Interrupt[] is the interrupt state output corresponding to Cnt[x]CVvEqPV[y].
The high-level pulse output by Interrupt[] uses a dotted line to indicate that interrupts can be output if the interrupt enable
is valid. The upper computer interrupt process and the interrupt_clean[] signal only appear after the output of the
Interrupt[], so they are also presented as dotted lines. Interrupt_clean[] is the clear signal given by the upper computer in
response to the Interrupt[], which clears the Interrupt[] to zero.

In the single-value comparison interrupt, each counting channel has only one interrupt signal output, and all counting
channels (0-7) can output single-value comparison interrupt signals. In the multi-value comparison interrupts, only
counting channels 0-3 can output multi-value interrupts, and each counter can output 8 (0-7) interrupt signals. When a
multi-value counting channel is selected, its yth comparison value corresponds to the interrupt signal one by one. Only
one counting channel is valid at a time for the multi-value comparison interrupt.

4.3 Digital input/output module
4.3.1 Creating a project for digital input/output module

Create a digital /O application. Add the device profile AX_EM_1600D_x.x.x.x.devdesc.xml,
AX_EM_0016DP_x.x.x.x.devdesc.xml, and AX_EM_0016DN_x.x.x.x.devdesc.xml required by the module.

4.3.2 Variable definition and use

[{ Ax_Em_1600D0 x

PCI-Bus IEC Objects Find Filter Show all -
Intermal Paramekers Variable Mapping Channel Address Type Unit Description
- B1 %1848 BYTE
Internal If0 Mapping p BitD %IX48.0 BOOL
R Bitl o4IN48. 1 BOOL
Status R/ Bit2 %IN48.2 BOOL
Information R/ Bit3 404483 BOOL
k Bit4 %0¥48,4 BOOL
R Bit5 S4IX48.5 BOOL
R/ Bits %I%48.6 BOOL
R/ Bit7 %I48.7 BOOL
=4 182 %1843 BYTE
k Bit %0¥42.0 BOOL
R Bitl 404431 BOOL
R/ Bit2 %432 BOOL
R/ Bit3 240449, 3 BOOL
k Bit4 %I¥42,4 BOOL
R Bit5 404435 BOOL
R/ Bits %I¥42.6 BOOL
R/ Bit7 %437 BOOL
R Version_FPGA %I850 BYTE

Figure 4-5 Variable mapping of input module

The IB1/IB2 input point status can be obtained by BYTE or BOOL type.

-63-

AX series programmable controller software manual Module Configuration

[Ax_EM_oo16DP X

PCI-Bus IEC Objects Find Filter Show all -
Intemal Parameters Variable Mapping Channel Address Type Unit Description
vl] w s em
Internal /0 Mapping @ Bitd %QX88.0 BOOL
@ Bit WOXES.1 BOOL
status @ Bit2 WOXES.2 BOOL
- @ Bit3 %WOXES.3 BOOL
@ Bit4 WOXES.4 BOOL
@ Bit5 WOXER.5 BOOL
K] Bit6 %QX88.5 BOOL
@ Bit? SQNEA.7 BOOL
= "# QB2 40883 BYTE
@ Bitd %QX89.0 BOOL
@ Bit1 %ONES.1 BOOL
"® Bit2 WONSS.2 BOOL
"® Bit3 WONSS.3 BOOL
"# Bit4 %ONE%.4 BOOL
" BitS %ONES.5 BOOL
" Bits %QX89.6 BOOL
" Bit7 %QX89.7 BOOL
R Version_FPGA %IB51 BNTE
[Ax_Em_oo16DN X
PCI-Bus IEC Objects Find Filter Show all -
T S Variable Mapping Channel Address Type Unit Description
=-"¢ 0B1 %OBS0 BYTE
| Internal IO Mapping g Bitd %0Q¥%50.0 BOOL
@ Bit1 %QYI0.1 BOOL
| Status "# Bit2 %QHI0.2 BOOL
Information @ Bit3 %OX90.3 BOOL
" Bitd %QX90.4 BOOL
@ BitS %QHOD.5 BOOL
" Bit6 %QK¥S0.6 BOOL
K] Bit7 %QHSD.7 BOOL
= "9 B2 %0BS1 BYTE
"® Eitd %QXeL0 BOOL
" Bitl %QKXSLl BOOL
@ Bit2 %QX9LI BOOL
@ Bit3 %QYOLI BOOL
@ Bit4 %QE914 BOOL
@ BitS %QEILS BOOL
@ Bits %Q¥S1.6 BOOL
@ Bit7 %QYILT BOOL
R Version_FPGA %IBS52 BYTE

Figure 4-6 Variable mapping of output module

The QB1/QB2 output point status can be controlled by BYTE or BOOL type.

4.4 Analog input/output module
4.4.1 Creating a project for analog input/output module

Create an analog |/O application project. Add the device profile AX_EM_4AD_x.x.x.x.devdesc.xml and
AX_EM_4DA_x.x.x.x.devdesc.xml required by the module.

-64-

AX series programmable controller software manual Module Configuration

4.4.2 Variable definition and use

3 Ax_EM_sAD x

PCI-Bus EC Objects Find Filter Show all -
[— Variable Mapping Channel Address Type Unit Description
+ T CHO QWSS UINT
Internal /O Mapping +-Ty CH1 %QWED UINT
+ T CH2 BOWE1 UINT
Status +-Ty CH3 %OWEZ UINT
Information " P QeI UINT
" FPO %QB128 USINT
" FP1 %QB129 USINT
@ FP2 %QB130 USINT
" FP3 %QB131 USINT
s ND BLIW2E INT
k N1 SHIWZS INT
W 2 BLIWE0 INT
R N3 oIV INT
W Version_FPGA %IW32 INT
H Wersion_MCU %l 33 INT

Figure 4-7 Variable mapping of analog input module

) Input/output Data)
Variable Meaning
type type
Control word of sampling channel 0-3. See the module
CHO~CH3 IN UINT L)
user manual for specific meaning.
AD sampling chip filter selection. See the module user
FP IN UINT .]
manual for specific meaning.
Filter parameter configuration of sampling channel 0-3.
FPO~FP3 IN USINT . .
See the module user manual for specific meaning.
INO~IN3 ouT INT Analog code value of sampling channel 0-3
Version_FPGA ouT INT FPGA version number, converted to octal number
Version_MCU ouT INT MCU version number, converted to octal number

[Ax_Em_4pA x

PCI-Bus IEC Objects Find Filter Show all -
I Variable Mapping Channel Address Type Unit Description
E2 K@ Configuration_CHO QW47 INT
Internal I/ Mapping T Data_CHO QW4 INT
" Data_Defaultd %QW4s INT
Status +-T Configuration_CH1 QW 50 INT
Information " Data_CH1 %QW5s1 INT
" Data_Default1 %QW52 INT
+- T Configuration_CH2 QW53 INT
" Data_CHZ %QW54 INT
"% Data_Default2 %QWS55 INT
+- T Configuration_CH3 %W 55 INT
" Data_CH3 %QW57 INT
] Data_Default3 QW55 INT
k] Version_FPGA YIB54 BYTE
B Version_MCU %IB55 BYTE

Figure 4-8 Variable mapping of analog output module

Input/output Data

Variable Meaning
type type
. . Control word of output channel 0-3. See the
Configuration_CH0~3 IN INT - .
module user manual for specific meaning.
Data_CHO0O~3 IN INT Output analog code value of output channel 0-3
Data_Default0O~3 IN INT Output analog preset code value of output

-65-

AX series programmable controller software manual Module Configuration

. Input/output Data)
Variable Meaning
type type
channel 0-3
Version_FPGA ouT BYTE FPGA version number, converted to octal number
Version_MCU ouT BYTE | MCU version number, converted to octal number

4.5 Temperature module
4.5.1 Creating a project for temperature module

Create a temperature module application. Add the device profile AX_EM_4PTC_.x.x.x.devdesc.xml required by the
module.

4 5.2 Variable definition and use

AX_EM 4PTC n
| PCl-Bus IEC Objects Find Filter Show all - o Add FB for 10 Channel.. |
Internal Parameters Variable Mapping Channel Address Type Unit Description @
k] Temperaturel SeID17 REAL
| Internal If0 Mapping k] Breakupd %IBT2 BYTE
k] Overrund %IET3 BYTE
Status 5 Temperature1 %D1s REAL
Information k] Breakup i SHIBA0 BYTE
b Overrunt %IBA1 BYTE
b] Temperature2 %ID21 REAL
b] Breakup2 %IBSE BYTE
* Overrunz %IB8S BYTE
k] Temperature3 24023 REAL
b] Breakup3 %IB9E BYTE
k] Overrun3 %IBST BYTE
k] Version_FPGA %698 BYTE
k] Version_MCU %693 BYTE
b In_Cic %025 REAL
% out_CIc %ID26 REAL
g Basic_Set_0 %QB132 BYTE
T Sampling_Period_0 %QB133 BYTE
T Sensor_Type_0 %QB134 BYTE
" Filtering_Time_0 %QE135 BYTE
" Upper_Value_0 %QWes INT
T Lower_Value_0 %OWES INT
T Basic_Set_1 %%QB140 BYTE
" Sampling_Period_1 %QB141 BYTE
" Sensor_Type_1 %QE142 BYTE
g Fittering_Time_1 %QB143 BYTE
T Upper_Value_1 %WOWF2 INT
i Lower_Value_1 %OWF3 INT
" Basic_Set_2 %QE148 BYTE
g Sampling_Period_2 %QB145 BYTE
T Sensor_Type_2 %QB150 BYTE
" Fittering_Time_2 %QB151 BYTE
" Upper_Value_2 %QW7E INT
" Lower_Value_2 %QW77 INT
T Basic_Set_3 %QB15%6 BYTE
T Sampling_Period_3 %QB157 BYTE
" Sensor_Type_3 %QE158 BYTE
" Filtering_Time_3 %QE159 BYTE
i linner Vel 3 scwen T e
Figure 4-9 Variable mapping of temperature module
. Input/output .
Variable Data type Meaning
type
. Control word of temperature sampling channel 0-3.
Basic_Set_0~3 IN BYTE o .
-7 See the module user manual for specific meaning.
.) Sampling period of temperature sampling channel 0—
Sampling_period_0~3 IN BYTE
3 (reserved)
Sensor_type_0~3 IN BYTE |[Sensor type of temperature sampling channel 0-3
. . Sampling filter configuration of temperature
Filtering_time_0~3 IN BYTE .
-~ sampling channel 0-3 (reserved)
Temperature upper limit of temperature sampling
Upper_value_0~3 IN INT
channel 0-3

-66-

AX series programmable controller software manual

Module Configuration

) Input/output)
Variable Data type Meaning
type
Temperature lower limit of temperature sampling
Lower_value_0~3 IN INT
channel 0-3
Temperature sampling value of temperature sampling
Temperature0~3 ouT REAL
channel 0-3
Disconnection flag of temperature sampling channel
Breakup0~3 ouT BYTE
0-3 (reserved)
Overrun0~3 ouT BYTE |Over-limit flag of temperature sampling channel 0-3
In_CJC ouT REAL |Internal cold junction temperature
Out_CJC ouT REAL |External cold junction temperature
Version_FPGA ouT BYTE |FPGA version number, converted to octal number
Version_MCU ouT BYTE |MCU version number, converted to octal number

4.6 Communication module

The EtherCAT communication module is used as an EtherCAT slave. Before using the module, add the device profile
INVT_ECAT_SLAVE_Vx.xx.xml. For detailed instructions, refer to the case of adding DA200 servo drive to the EtherCAT

master node.

1. Create a new project in the Invtmatic Studio upper computer, Right click Device to add a device, and add an
EtherCAT Master SoftMotion module, as shown in the following figure:

L @ Add Device x
Fle Edit View Project Build Of L 4
> 3 = 7 [e CAT_aster_Softhobor] -
" M d BB X A
Action
| @ Append device) Update device |
Devices -
= 1) thosesz for a fulltext sear Vendor | <Allvendors> v [®
= |3 pevice @t
e (BTGP Name Vendor Version Description - ad
=& Actooe
e * @ vscelereous
- pplication
™ = @ Fetuses
Lirary Manager
" ! + oo CaNbuS
8 pLc_pre pro) - .
= w3 Ethercal
88 Tosk Contgoton o w00% |@
s = ook Master
& MaTask
8 pierc (i) EthercaT Master 35 - Smart Software Sokutons GmbH __ 3.5.15.0 __ EtherCAT Master.
- | ethercar Master Softotion 35 - Smart Software Soluions GmbH 3.5.15.0 __ EtherCAT Master SoftMoton.. |
% HIGH PULSE_IO
BB Ethermet Adapter
2 SoftMotion General Axis Pool
+ = eteteyr
(&} HomesBuiding Automation
4w Modbus
[7] Group by category [] Display all versions (for experts only) [] Display outdated versions
@ mame:EthercaT Master Softmoton
Vendor: 35 - Smart Software Solutons Gt
. Categories: Master -
L« I—— Version: 3.5.15.0 =2
Pous Order Number: =
ERy— Description: EtherCAT Master Softotion. .
@ project settngs
100% [@
Append selected device as last child of 3
Device |
v x
© (You can select another target nade inthe navigator while this window is open.) * x|
Add D
Lastbuid: © 0 ® 0 Precompie)

Figure 4-10 Add an EtherCAT Master SoftMotion module

2. Right click the EtherCAT Master SoftMotion module to add a device, and add the EtherCAT Slave Module

(AX-EM-RCM-ET), as shown in the following figure:

-67-

AX series programmable controller software manual

Module Configuration

@ Add Device
Fle Edit View Project Build oJ‘
= 5 Name [AX_EM_ECM_ET
Hhed & L —
Acton
{ @ Appenddevice () Insert device O Update device
o
=3 tnotedz Vendor | <Al vendors> v
= (@ Device mWT AX70 Name Vendor -
= @0 PLctoge -
= @ redouses
= © Avplication @
P = ok EtherCAT
ol o = 0¥ Save
8] PLe_prG PRG)
— # [Delta Blectronis, Inc. - Servo Drives
= @ Task Configuraton
(2 ifim electronic - fm electronic Ether CAT Devices
& EthercAT Tosk
= @t
= & ManTaxk
= (2 EtherCAT MODULE
& picpre
J EthesCAT Slave Modude v
8 HIGH PULSE 10
(2 IWT INDUSTRIAL
[EtherCAT_master_Softoton (Etherd]
(13 Panasoric Corporation, Applances Company - AC Servo Driver
SoRMoton General Axs Pol LS s S S v
< >
= [Displayai perts only) (] Display
@ Mame:EtherCAT Slave Modue
Vendor: INT
" Categories: siave <
1 Version: Revsion=16.£00000100 =
PoUs vEqueT =~
(S0 thoted2 Joescription: EtherCAT Siave mparted from Slave XML: INVT_ECAT_SLAVE_FOR_CODESYS_V1.08.xmi Device: Ether AT Save Mode |
B Project settngs
Append selected device as last child of
EtherCAT_Master_SoftMotion
© (You can select another target node inthe navigator while this window s open
Lastbuld: @0 ® 0 Precomple o/ Q8 Project user: (nobody) Q

Figure 4-11 Add a EtherCAT remote expansion module
The following section explains how to use the EtherCAT remote expansion module to extend our existing 10.
4.6.1 Digital input module

EtherCAT remote extension module (AX-EM-Rcm-ET) is used to extend the digital input module (AX-EM-1600D) through
the backplane. The instructions are as follows:

1. Right click AX-EM-ECM-ET in the device panel to add the digital input module (AX_EM_1600D). Control 16
channels through two sets of variables InByteO and InBytel in the Module/IO mapping tab, as shown in the following

figure.
[untitled2.project* - Invtmatic Studio - x
Flle Edit View Project Buld Online Debug Tools Window Help A 4
e d & LB X MM = 3 |#8 Application [Device: PLC Logic] ~ Of ~ -
Devices - 3% (8] Pc_Pre [Ax_em_16000 x -
. 37:“ (e axmy Startup Parameters Find Filter Show al -
= B ALC Logic Variable Mepping Channel Address Type Uit Description
= Application » InByted %83 USINT InByted
0 Lieary Mansger Module IEC Objects » B0 %DG.0 B00L
[B) mc_pre Pro) » Be1 %31 pooL
= (@8 Tosk Configuration e » B2 %03.2 gooL
& EtherCAT Task » B3 %DX3,3 BoOL
= & vanTas » Bte %DG.4 BOOL
&) ncre » BtS %035 BOOL
B HIGH PULSE_IO » [D6 BOOL
= [EmercAT Master_Softioton (EterCAT Mastes Soft » 87 w37 8oL
CM ET (EthesCAT Slave Module) =% FBye1 %B4 USINT Inbyte1
" w s s
3 SoftMotion General Axs Pool » Bt1 L BoOL
» B2 %IX4.2 BOOL
» B3 %D4.3 BooL
“ % X4 4 BOOL
* Bts D45 Bo0L
* Bes D46 8O0L
= = » Bt7 %047 BOOL
POUS -8 x
= thevedz = -
Y InByte eset Mapping supdatevarisbles Use parent device setting
= Create new variable “# = Mapto exsting varisble
< >
Messages - Total O error(s), O waming(s), 3 message(s) -5 x
Devices - [0 0 erroris) [® 0 warning(s) [@ 3 message(s) | X ¥
Description Project Object Position -
Lastbuld: @0 ® 0 Precomple -] Project user: (nobedy) Q

Figure 4-12 Variable mapping of digital input module

2. After compiling, log in to download the project and run it.
4.6.2 Digital output module

EtherCAT remote extension module (AX-EM-Rcm-ET) is used to extend the digital output module (AX-EM-0016DP/
AX-EM-0016DN) through the backplane. The instructions are as follows:

1. Right click AX-EM-ECM-ET in the device panel to add the digital output module (AX_EM_0016DP). Control 16
channels through two sets of variables OutByteO and OutBytel in the Module/IO mapping tab, as shown in the
following figure.

-68-

AX series programmable controller software manual Module Configuration

2.

Devices v ax 8] mcrre @ Ax_em_oo160P x -
= () Untdedz = -
A FAp— Startup Parameters Find Filter Show all E
= B rcLoge | Variable Mapping Channel Address Type Unit Description
= € Apphication =" OutByted %Q844 USINT OutByted
(D Library Manager Madule IEC Objects "* 8itd %QX44.0 BOOL
[E) pc_pre pr) "» Bit1 %QX44.1 BOOL
= (# Tesk Configuration s "» Bit2 %QX#4.2 BOOL
& EtherCAT Task “» B3 %QX44.3 BOOL
= & MainTask "» Bit4 %QX44.4 BOOL
@) pcrre " Bits %QN445 BOOL
3 HIGH_PULSE_IO "» Bits %446 BOOL
= (@ EtherCAT_Master_SoftMotion (EtherCAT Master SoftN " Bit7 %QX44.7 BOOL
=@ ax M_ET (EtherCAT Slave Module) =" OutBytel %QB4S USINT OutBytel
Fi] 50P (Digital Output 16 Bits) "» BitD %QX45.0 BOOL
"3 SoftMotion General Axis Pool "» Bitl %QX45.1 BOOL
"* Bit2 %Qrds.2 BOOL
» 6t %Q45.3 BOOL
"» Bite %QX45.4 BOOL
" BitS %QX455 BOOL
"» Bits %QX45.6 BOOL
"» Bit7 %QN457 BOOL
OutByte e Always updatevarisbles | Use parent device setiing
= Create new variable " =Mapto existing variable
< > « >

Figure 4-13 Variable mapping of digital output module

After compiling, log in to download the project and run it.

4.6.3 Analog input module

EtherCAT remote extension module (AX-EM-Rcm-ET) is used to extend the analog input module (AX-EM-4AD) through
the backplane. The instructions are as follows:

1.

Right click AX-EM-ECM-ET in the device panel to add the analog input module (AX_EM_4AD). Control the module
through the multiple sets of variables in the Module/IO mapping tab, as shown in the following figure.

Devices. - B X [g] mcrre @ Axem_on [Ax_EM_aAD x -
= unotied2 - -
= (i Device (VT AX7X) Startup Parameters Find Filter Show all B
= 0 pLc Loge | Variable Mapping Channel Address Type Unit Description
= € Application E o] oo %QW34 INT o
) Library Manager Module IEC Objects + "y cHL %QW35 INT oL
[B) rc_pre (PRG) “* 2 %QW35 INT o
= (@8 Task Configuration DT " o3 %wQW37 INT o
@ EtherCAT Task + "y 3 %QW38 INT m
= & ManTask . N0 %IWE INT N
@) rc_pre L INO_Fault Code %IW7 INT INO_Fault_Code
B HIGH_PULSE_[O + Ny WIW8 N N
= (@ EtherCAT_Master_SoftMotion (EtherCAT Master Soft\ Ee] INLFault Code “%IW9 INT IN1_Fauit_Code
= [AX_EM_ECM_ET (EtherCAT Siave Module) =Y N2 WIWID INT N2
3] ax B a0 (ansiog Output 16 5.51 + INZ Fault Code %IWil INT IN2_Fault_Code
(1] |AX_EM_44D (Analog Input 16 Bits) Y N3 WIW12 INT N3
‘3 Softotion General Axis Pool =% IN3 Faut Code %IW13 INT IN3_Fault_Code
ResetMapping Always updatevariables Use parent device setting
= Create new variable " =Mapto existing variable
< 5| « >

Figure 4-14 Variable mapping of analog input module
After compiling, log in to download the project and run it.

Variable description: the following table uses channel 0 as an example to illustrate the use of all variables for channel
0.

Table 4-4 Channel O variable description

Parameters Value | Valid bit| Variable name | Variable type

sinc5+sincl 00

. sinc5+sincl+enhance50/60 01
Filter : [1:0] FP
sinc3 10

Reserved
Enable Enable 1 0 WORD
channel 0 Disable 0 [0]
Channel O - -
" i Disconnection Enable 1 1 CHO
configuration detection Disable 0 [1]
Conversion ov-5Vv 000 [4:2]

-69-

AX series programmable controller software manual Module Configuration

Parameters Value | Valid bit| Variable name | Variable type
mode ov-10V 001
-5-5V 010
-10vV-10V 011
-20mA-20mA | 100
OmA-20mA | 101
4mA-20mA 110
o Enable 1
Over-limit flag X [5]
Disable 0
Over range Enable 1
detection [6]
enable bit Disable 0
Reserved [15:7]
Channel 0 data Data [15:0] INO
Channel 0 fault code)
Indicates the current fault
(See Table 4-6 for |, . [15:0] INO_Fault_Code
. information of the module.
details)
Table 4-5 Mapping of rated range and actual input analog value
Type Input rated range Mapped digital value
-10V-10V -10000—+10000
. ov-10v 0-10000
Analog voltage input
-5V—+5V - 5000—+5000
ov-5v 0-5000
-20mA-20mA -20000—20000
Analog current input 0mA-20mA 0—20000
4mA-20mA 4000—20000

Table 4-6 Channel fault code

Channel 0 Meaning
AO Channel 0 is disconnected.
Al Channel 0 exceeds the limits (exceeds the range of -25V—+25V)
A Channel 0 exceeds the upper limit of the range (exceeds the upper limit of the
currently selected voltage range)
A3 Channel 0 exceeds the lower limit of the range (exceeds the lower limit of the
currently selected voltage range)
Channel 1 Meaning
A4 Channel 1 is disconnected.
A5 Channel 1 exceeds the limits (exceeds the range of -25V—+25V)
AG Channel 1 exceeds the upper limit of the range (exceeds the upper limit of the
currently selected voltage range)
A7 Channel 1 exceeds the lower limit of the range (exceeds the lower limit of the
currently selected voltage range)
Channel 2 Meaning
A8 Channel 2 is disconnected.
A9 Channel 2 exceeds the limits (exceeds the range of -25V—+25V)
AA Channel 2 exceeds the upper limit of the range (exceeds the upper limit of the

-70-

AX series programmable controller software manual Module Configuration

Channel 2 Meaning
currently selected voltage range)
Ab Channel 2 exceeds the lower limit of the range (exceeds the lower limit of the
currently selected voltage range)
Channel 3 Meaning
AC Channel 3 is disconnected.
Ad Channel 3 exceeds the limits (exceeds the range of -25V—-+25V)
AE Channel 3 exceeds the upper limit of the range (exceeds the upper limit of the
currently selected voltage range)
AF Channel 3 exceeds the lower limit of the range (exceeds the lower limit of the
currently selected voltage range)

4.6.4 Analog output module

EtherCAT remote extension module (AX-EM-Rcm-ET) is used to extend the analog output module (AX-EM-4DA) through

the backplane. The instructions are as follows:

1.

Right click AX-EM-ECM-ET in the device panel to add the analog output module (AX_EM_4DA). Control the module
through the multiple sets of variables in the Module/IO mapping tab, as shown in the following figure.

Devices: - 3% [E] Pcrro @ Ax_EM_apa x [ax EM_ a0 -
r jri;e PR ‘ Startup Parameters Find Filter Show all
=80 pLcLogic Variable Mapping Channel Address Type Unit Description
= € Application + " Configuration CHO %QW22 INT Configuration_CHO
M Lirary Manager Module IEC Objects + "9 Data_CHO % INT Data_CHO
2] Puc_pr6 (FRG) + "9 Data_Defaultd INT Data_Defaultd
& 8 sk Contqration Information PN Configuraion CH1 %QW25 INT Configuration_CH1
8 EtherCAT Task + %9 Data_CH1 %QW26 INT Data_CH1
= & ManTask + "9 Data_Defauit1 %QW27 INT Data_Defauit1
8] pLc_FRG + " Configuration CHZ ~ %QW28 INT Configuration_CH2
B HIGH PULSE_IO + "o Data_CH2 %QW29 INT Data_CH2
= (@ EtherCAT Master_SoftMotion (EtherCAT Master Soft + "y Data_Defauit2 %QW30 INT Data_Default2
= [Ax_EM ECM ET EtherCAT Siave Moduie) + "y Configuration_CH3 ~ %QW31 INT Configuration_CH3
+ "9 Data_cH3 INT Data_CH3
1) AX_EM_4AD (Analog Input 16 Bits) + e Data_Defauit3 INT Data_Default3
" SoftMotion General Axis Pool Y INTO_Fault_Code KIW2 INT INTO_Fault_Code
% INT1_Fault_Code %IW3 INT INT1_Fault_Code
. INT2_Fault_Code HIW4 INT INT2_Fault_Code
+ % INT3_Fault_Code RIWS INT INT3_Fault_Code
Reset Mapping Always updatevariables | Use parent device setting
@ = Create new variable “# = Mapto existing variable
< > < >

Figure 4-15 Variable mapping of analog output module
After compiling, log in to download the project and run it.

Variable description: the following table uses channel 0 as an example to illustrate the use of all variables for channel
0.

Table 4-7 Channel 0 variable description

Parameters Value | Valid bit Variable name

Enable Enable 0]

channel 0 Disable

) . Disconnectio . .
Channel 0 configuration) Reserved [1] Configuration_CHO

n detection

Conversion ovV-5Vv 000 [4:2]
mode ovV-10V 001 '

-71-

AX series programmable controller software manual Module Configuration

Parameters Value | Valid bit Variable name

-5V-5V 010
-10V-10V 011
4mA-20mA 100
O0mA-20mA 101
Clear output 00

Output status| Keep output 01

[6:5]
after stop | Output preset 10
value
Reserved [15:7]
Channel 0 code value Data [15:0] Data_CHO
Channel 0 output preset
Output preset value [15:0] Data_DefaultO
value
Channel 0 fault code Indicates the current fault
. . . [15:0] INTO_Fault_Code
(See Table 4-9 for details) information of the module.

Table 4-8 Mapping of rated range and actual input analog value

Type Input rated range Mapped digital value
-10vV-10V -10000—+10000
ov-10V 0-10000
Analog voltage output
-5V-5V -5000-+5000
ov-5V 0-5000
4mA-20mA 4000-20000
Analog current output
0mA—-20mA 0-20000
Table 4-9 Channel fault code
Channel 0 Meaning
BO The current output of channel 0 is disconnected.
B1 The voltage output of channel 0 is short-circuited.
Channel 1 Meaning
B2 The current output of channel 1 is disconnected.
B3 The voltage output of channel 1 is short-circuited.
Channel 2 Meaning
B4 The current output of channel 2 is disconnected.
B5 The voltage output of channel 2 is short-circuited.
Channel 3 Meaning
B6 The current output of channel 3 is disconnected.
B7 The voltage output of channel 3 is short-circuited.
Output module power failure Meaning
B8 The 24V power board of the output module is disconnected.

4.6.5 Temperature module

EtherCAT remote extension module (AX-EM-Rcm-ET) is used to extend the temperature module (AX-EM-4PTC) through
the backplane. The instructions are as follows:

-72-

AX series programmable controller software manual Module Configuration

1. Right click AX-EM-ECM-ET in the device panel to add the temperature module (AX_EM_4PTC). Control the module
through the multiple sets of variables in the Module/IO mapping tab, as shown in the following figure.

Devices - 3% @ ax_em_apTc x -
=) Untited? -
= (@ Device @WT A7)
= (80 PLC Logic
= © Avplication
(D Lirary Manager
(8] PLc_PRG (PRG)
= (@ Task configuration
€ EtherCaT Task
= & ManTask
8] pc_rre
B HIGH_PULSE_IO
= () EtherCAT Master_SoftMotion (EtherCAT Master Soft{
= @ axem e

8 Pcrre

Startup Pa Find Filter Show all

Address

Variable Type Unit Description
W22 INT Config_Wordd
INT Config_Word1
INT
INT
INT

INT Temperaturel

Siave Modue) T Temperature2

INT Temperature3
NT Breskup

FIIIIITIIISIS

ResetMapping Always updatevariables |Use parent device setting

< 3| <

Figure 4-16 Variable mapping of temperature module

2. After compiling, log in to download the project and run it.

3. Variable description: the following tables describe the use of all variables for the four channels.
Table 4-10 Variable description

Note: The channel disconnection detection function and detection results are reserved.

Parameters Value Valid bit Variable name
Temperature of channel 0 [15:0] TemperatureO
Temperature of channel 1 [15:0] Temperaturel
Temperature of channel 2 [15:0] Temperature2
Temperature of channel 3 [15:0] Temperature3
Disconnection detection Normal 00 [1:0]
result of channel 0 Disconnected 01 '
Disconnection detection Normal 00 3:2]
result of channel 1 Disconnected 01 '
. . - Breakup
Disconnection detection Normal 00 [0:8]
result of channel 2 Disconnected 01 '
Disconnection detection Normal 00
- [11:10]
result of channel 3 Disconnected 01
Enable 1
Enable channel 0 X [0]
Disable 0
Displ d e 0 [1]
isplay mode
Pay °F 1
Internal cold junction 0
Cold junction compensation 2]
compensation method External cold junction 1
compensation Config_Word0
Sensor disconnection Enable 1 3]
detection Disable 0
. . Enable 1
Over-limit detection X [4]
Disable 0
B 000
Sensor type E 001 [11:8]
J 010

-73-

AX series programmable controller software manual

Module Configuration

Parameters Value Valid bit Variable name
K 011
N 100
R 101
S 110
T 111
PT100 1000
PT500 1001
PT1000 1010
CU500 1011
2-Wire
i 00
3-Wire
i 01 [13:12]
4-Wire
10
(For RTD only)
Filter time 0-100 0-100 [6:0]
Enable 1
Enable channel 1 X [8]
Disable 0
Displ d < 0 [9]
isplay mode
ey °F 1
Internal cold junction 0
Cold junction compensation Config_Word1
. - - [10]
compensation method External cold junction 1
compensation
Sensor disconnection Enable 1 [11]
detection Disable 0
.) Enable 1
Over-limit detection X [12]
Disable 0
B 000
E 001
J 010
K 011
N 100
R 101
[3:0]
S 110
T 111
Sensor type .
PT100 1000 Config_Word2
PT500 1001
PT1000 1010
CU500 1011
2-Wire
i 00
3-Wire
) 01 [5:4]
4-Wire
10
(For RTD only)
Filter time 0-100 0-100 [14:8]
Enable 1
Enable channel 2 X [0]
Disable 0
] °C 0]
Display mode oF 1 [1] Config_Word3
Cold junction Internal cold junction
0 [2]

compensation method

compensation

-74-

AX series programmable controller software manual

Module Configuration

Parameters Value Valid bit Variable name
External cold junction 1
compensation
Sensor disconnection Enable 1 3]
detection Disable 0
- . Enable 1
Over-limit detection X [4]
Disable 0
B 000
E 001
J 010
K 011
N 100
R 101
[11:8]
S 110
T 111
Sensor type
PT100 1000
PT500 1001
PT1000 1010
CU500 1011
2-Wire
) 00
3-Wire
i 01 [13:12]
4-Wire
10
(For RTD only)
Filter time 0-100 0-100 [6:0]
Enable 1
Enable channel 3 X [8]
Disable 0
Displ d < 0 [9]
isplay mode
pay °F 1
Internal cold junction 0
Cold junction compensation [10] Config_Word4
compensation method External cold junction 1
compensation
Sensor disconnection Enable 1 [11]
detection Disable 0
-) Enable 1
Over-limit detection X [12]
Disable 0
B 000
E 001
J 010
K 011
N 100
R 101
[3:0]
S 110 .
Sensor type Config_Word5
T 111
PT100 1000
PT500 1001
PT1000 1010
CU500 1011
2-Wire 00
) [5:4]
3-Wire 01

-75-

AX series programmable controller software manual

Module Configuration

Parameters Value Valid bit Variable name
4-Wire 10
(For RTD only)
Filter time 0-100 0-100 [14:8]
) . 250ms 01
Sampling period of
500ms 10 [1:0]
channel 0
1000ms 11
) . 250ms 01
Sampling period of
500ms 10 [3:2]
channel 1
1000ms 11 .
Config_Word6
. . 250ms 01
Sampling period of
500ms 10 [5:4]
channel 2
1000ms 11
) . 250ms 01
Sampling period of
500ms 10 [7:6]
channel 3
1000ms 11
Table 4-11 Supported sensor types and measurement range
Temperature range in Temperature range in
ltem Sensor name . .
Celsius Fahrenheit
PT100 -200.0°C-850°C -328.0°F-1562.0°F
. PT500 -200.0°C-850°C -328.0°F-1562.0°F
Thermal resistor type
PT1000 -200.0°C-850°C -328.0°F-1562.0°F
Cu100 -50.0°C-150°C -58.0°F-302.0°F
B 200.0°C-1800°C 392.0°F-3272.0°F
E -270.0°C-1000°C -454.0°F-1832.0°F
N -200.0°C-1300°C -328.0°F-2372.0°F
J -210.0°C-1200°C -346.0°F-2192.0°F
Thermocouples type
K -270.0°C-1370°C -454.0°F-2498.0°F
R -50.0°C-1765°C -58.0°F—3209.0°F
S -50.0°C-1765°C -58.0°F-3209.0°F
T -270.0°C-400°C -454.0°F-752.0°F

4.7 Distributed I/O module

The distributed 1/0 AE1420/AE2420 module is EtherCAT slave module with 32 digital inputs/32 digital outputs. Before
using the module, you need to install the device profile INVT_AE1420_AE2420_xxx.xml for the module.

4.7.1 Creating a project for distributed 1/O module

Create a distributed I/O module application, and install the device profile INVT_AE1420_AE2420_xxx.xml required by the
module. Right click EtherCAT_Master_SoftMotion in the device panel to add the AE1420_AE2420 module.

-76-

AX series programmable controller software manual Module Configuration

EtherCAT.project” - Invtmatic Studio

m} x
File Edit View Project Build Online Debug Tools Window Help
B@H & v o b BEX (| MS(N A& |8 [T B4 | Application [Device: PLC Logic] ~ OF G » m 8 [[= %=
[Add Device
Devices * 1 X
Name [AE1420_AE2420_100 |
=5) EthercaT -
= [0 Devics T AX7X) K=
42 PLE Logic (® Append device (O) Insert device Flug device () Update device
- HIGH PULSE 1O [String for a fuliext search | vendor | callvendors> -
Callbue f-abbuct
A
EtherCAT_Master_SoftMotion (EtherCAT Master SoftMation, Narme =
—TT . - r Y =/~ [shenzhen INVT Blectric Co., Ltd.
"% SoftMotion General Axis Pool = [EtherCaT MODULE
1 [ae1420_ag2420 Modhule
i R ii | ﬁerAT Slave Module
* - [l STOEBER ANTRIEBSTECHNIK GmbH & Co. KG - Antricbe
*- [Yaskawa Electric Corporation - Servo Drives v
< >
[Group by category [] Display all versions (for experts only) [] Display outdated versions
[l name:AE1420_AE2420 Module ~
WVendor: Shenzhen IMVT Electric Co., Ltd.
Categories: Slave
Version: Revision=16#00000100 =
Order Number: AE1420_AE2420_100 had
Description: EtherCAT Slave imported from Slave XML: INVT_AE1420
BFTAIN AN sl Navira: AF 1470 AFI4W Moc da
Append selected device as last child of
EtherCAT_Master_SoftMotion
< > # (You can select another target node inthe navigatar while this window is open.)
5% Devices POUs
“EI Messages - Total 0 error(s), 0 warning(s), 1 message(s)| I St e | | ez ‘
o Lastbuli @0 B0 Precomple o/ Q5 Frojectuser: (nobody) Q
Devices - 3 X [T AF1420_AF2420_100 x| -
=15 EthercAT -
@ General Address Additional
=-[{J Device (VT AXTX) Ether
i AutoIncaddress l:l Enable expert settings
¥ Eg FLCLogic Process Data o
A HIGH_PULSE_IO EtherCAT address 1002 = [] optional

m CAMbus (CANbus)

Startup Parameters

4 Distributed Clock

= m EtherCAT_Master_SoftMotion {EtherCAT Master SoftMotion)
. = [fJ ™WT_Da200_252 (DA200-H EtherCAT(CoE) Drive)

EtherCAT If0 Mapping

Select DC

- I SM_Drive_GenericDSP402 (SM_Drive_GenericDSP4H EtherCAT [EC Objects | Enable
" [f] AE1420_AE2420_100 (AE1420_AE2420 Module) I syncd:
SoftMotion General Axis Pool Status)

/| Enable Sync0

Information Syncunitoyde [y g

2] cydetime (us)

Userdefned

| Syncl:

Shift time (ps)

Enable Sync 1

Syncunitoyde [y q “ 4000 = Cycle time (ps)

User-defined shift time (ps)

Click the AE1420_AE?2420 module in the device panel, and configure the synchronization method in the General interface.

In the EtherCAT I/O Mapping interface, the output points are accessed via YO-Y7/Y10-Y17/Y20-Y27/Y30-Y37, and the
input points are accessed via X0—X7/X10—X17/X20-X27/X30-X37.

-77-

AX series programmable controller software manual Module Configuration

Devices v B X || [[] AE1420_AE2420_100 X
2 %"‘;::; - — o Filter Show al - A
-2 pLC Logic T T Variable Mapping Channel | Address Type Unit Description

B HIGH_PULSE_IO) Yo %QX88.0 BIT Yo

[0 cAMbus (CANbus) Startup Parameters L Y1 ©%OXes.l BT ¥1
=[]l EtherCAT_Master_Softiotion (EtherCAT Master Softiotior "% 2 %QKE.2 BIT vz
=- (@ mVT_DA200_262 (DA200-N EtherCAT(CE) Drive) | EiherCAT YO Manaing "¢ v3 %wQNEs.3 BIT ¥3
il it 2 | EtherCAT IEC Objects i va %Qxes.4 BIT Y4

I () AE1420_AE2420_100 (AE1420_AE2420 Moduig) I e vs %QMEs.s BIT ¥s
LS status “# v6 %QKEB.E BIT vé
g Y7 %QXes.7 BT Y7
| Tnformation i Y10 %QXBS.0 BIT vin
" v11 %WQUEs.1 BIT Y11
¥ Y12 wQKEs.2 BIT 12
" v13 %QHEs.3 BIT 13
"¢ V14 %wOX89.4 BIT Y14
"o v15 %WQHES.S BIT 15
"¢ V16 WOXe9.6 BIT Y16
¥ Y17 %QKBS.7 BIT 17

g Y20 %QKS0.0 BIT Y20

¥ va1 wWQKe.t BIT 21
" vzz WQUe0.2 BIT Y22

¥ v23 WQHe0.E BIT 23
" Y24 wWQUe04 BIT 24

¥ v2s %QKS0.5 BIT ¥25

) Y26 %QX90.6 BT Y26
"¢ 27 WOXS0.7 BIT 27

"o ¥30 %WQHeL0 BIT 30

"¢ 31 WOX9LL BIT Y31
“# 32 wQrel2 BIT 32

@ v33 %wQUeL3 BIT 33

¥ 34 wQrea BIT 34

" ¥3s WQUELS BIT Y35

¥ v36 wQHeLE BIT Y36

" 37 WQUEL7 BIT 37

R ol IS0 BIT 0

L] X1 I8l BIT X1

R x2 WIN4s.2 BIT X2

4.8 Priority setting of each module (recommended value)
4.8.1 Setting priority

If the created project contains multiple functional modules, create multiple tasks and set the task priority as follows. Table
4-12 shows the recommended values for task priority.

Devices - o X 5
=15 Untited2 -
=-({J Device (INVT AX7X)
= B PLC Logic
= 1} Application
m Library Manager
[Z] PLC_PRG (PRG)
= E Task Configuration

PLC_PRG £ Task &£ MainTask x

Configuration

Priority (0..31): [U

Type
Cydic “

Interval (e.g. t#200ms) |4

Watchdog
[JEnable

Time (e.g. t#200ms)

@ Task
'3 HIGH_PULSE_IO

* (] EtherCAT Master_SoftMotion (EtherCAT Master Softh
3 SoftMotion General Axis Pool

Sensitivity 1

4k Add Call % Remove Call [# Change Call Move Up Move Down |
POU Comment
& PLC_PRG

Figure 4-17 Example of task project priority settings
Table 4-12 Setting priority

Function module

Recommended priority

PlcCfg module

31

ModbusTCP

15-30

ModbusRTU

15-30

High-speed 1/0

1-15

Analog input/output

1-15

-78-

AX series programmable controller software manual Module Configuration

Function module Recommended priority
Temperature module 1-15
EtherCAT 0

4.8.2 Configuring sub-device bus cycle options

Under the Controller settings > Bus cycle > Bus cycle task of the AX7X device, the Bus cycle task list provides the
tasks defined in the task configuration of the current valid project (such as "MainTask", "EtherCAT Master”). Select one of
the tasks as the bus cycle of the current project, or select the option <unspecified>, which indicates that the shortest task
cycle time or the fastest execution cycle will be applied. You can switch to another settings, but be sure to note the
following.

Note: Before modifying the <unspecified> setting, be aware that it is a default action defined by the device description.
By default, the task can be defined with a shortest cycle time or a longest cycle time. Please check this carefully before
applying this setting.

To improve the stability of the system when using expansion modules and EtherCAT modules (especially the
EtherCAT_Master_SoftMotion module), you should select the task corresponding to each module in EtherCAT 1/O
Mapping > Bus Cycle Options. The reference program is as follows.

B untitled2. project* - Invtmatic Studio

Fle Edit View Project Build Online Debug Tools Window Help

e "= 84 2% 44 45 [t [Application [Device: PLC Logic] ~ ©F
Devices -+ 3 X @ MainTask _'] EtherCAT_Master_SoftMotion X
=3 Untited2 - ;
General Bus Cyde Options
=-[H§ Ox INVT AX7X
B eviee {1) Bus cycle task EtherCAT _Task v
= [0 PLC Logic Sync Unit Assignment Use parent bus cyde setting
= 1} Application EtherCAT Task
MainTask
m Library Manager Log

Z] PLC_PRG (PRG)
= E Task Configuration
2 EtherCAT Task
= @ MainTask
&) pc_PRG Status
% HIGH_PULSE_IO
= \;j EtherCAT_Master_SoftMotion (EtherCAT Master SoftN
|3 INVT_DA200_262 (DA200-N EtherCAT(CoE) Drive
3 SoftMotion General Axis Pool

EtherCAT IfO Mapping

EtherCAT IEC Objects

Information

Figure 4-18 Expansion module bus cycle task setting

-79-

AX series programmable controller software manual Device Diagnosis

5 Device Diagnosis

AX series equipment diagnostic information is reflected in three ways, namely fault indicator, digital tube and diagnostic
code. Fault indicators show the system and bus error. Digital tubes display the fault code of a specific function module.
Diagnostic codes further indicate the specific types of faults, which can be generally searched by upper computer
software.

5.1 Fault indicator

The AX series fault indicator is mainly composed of two parts. The first part is mainly the system and bus indicator lights.
The second part is mainly digital tube indicators.

Dial switch Digital tube
=)
Input/Output
System indicator —— & g H Pilazash i:giucatot: -
[Sreomer Eﬁ LERRA
“e ™
TP MN ~
HHE &l
i) @ H
Il < 10
©||m = i
3 gl
e 3 1
38 i
! e $ s
O | 1 o ||, B
= \(f e—1)
Figure 5-1 Fault indicator diagram
5.1.1 System and bus fault indicator
Table 5-1 System and bus fault indicator
Fault indicator name Error type Error content
SF System fault Codesys is not started
BF Bus communication fault Modbus RTU/Modbus TCP/backplane bus fault
CAN CAN bus fault Reserved
ERR Module fault Reserved

Note: When connecting multiple programmable controllers, you can click the Wink button on the software platform to
observe the simultaneous flashing of the SF, BF, CAN, and ERR indicators to identify the device.

5.1.2 High-speed input/output indicator

If the output/input of the port is valid, the indicator corresponding to the port is on, and if the output/input is invalid, the
corresponding indicator is off.

-80-

AX series programmable controller software manual Device Diagnosis

5.2 Digital tube fault code

Digital tube .
Module Fault type Solution
Fault code
. Check the underlying network
16#10 Error setting local new IP . o
configuration file.
16411 Error setting local new subnet Check the underlying network
mask configuration file.
Failed to read the local IP and Check the underlying network
16#12 CPU module) S
subnet mask configuration file.
PlcCfg : - : -
16#13 Abnormal time setting format Check the time setting format.
16#14 Error setting motion controller time |Check the underlying code.
. . The controller button battery
Error getting motion controller real o N
16#15 i voltage is insufficient, replace the
ime
battery.
Check whether the underlying
16#20 Failed to open serial port COM1 |serial port number corresponds
to the hardware.
)) Check the baud rate setting of
16#21 Baud rate setting failed
the slave node
Check the specific error code of
COM1 485

Data bit, stop bit or parity bit setting|Invtmatic Studio ErrorID. Data bit:
failed ErrorlD=3, check bit ErrorID=4,
stop bit ErrorlD=5.

16#22 ModbusRTU_Slavel

System error Err_Sym, or slave

16#23 Slave function enable failed .

enable is turned on.

. Check detailed parameter

16#24 Slave read and write error)

settings

Check whether the underlying
16#25 Failed to open serial port COM1 |serial port number corresponds

to the hardware.

)) Check the SlavelD number

16#26 SlavelD setting failed

settings of the master node.
Check whether the data bit
Data bit, stop bit or parity bit setting|setting value is 7 or 8, whether

16#27] N
failed the check bitis 0, 1 or 2, and
COM1 485 whether the stop bit is 1 or 2.
ModbusRTU_Master]) System error Err_Sym, or master
16#28 Master function enable failed .
1 enable is turned on.

) Check that the master-slave
One of the the following goes .
) . initialization parameter
wrong: master read/write coil, read) o]
16#29)))] configuration is consistent and
holding register, write a single o
)])) that the hardware connection is
register, write multiple registers
correct.

) Ensure that only one of the
Two function block enabled at the)])
16#2A) function block is enabled in the
same time.
program

-81-

AX series programmable controller software manual Device Diagnosis

Digital tube .
Module Fault type Solution
Fault code

Check whether the underlying
16#30 Failed to open serial port COM2 |serial port number corresponds
to the hardware.

Check the baud rate setting of

16#31 Baud rate setting failed
the slave node

Check the specific error code of
Data bit, stop bit or parity bit setting|Invtmatic Studio ErrorID. Data bit:
failed ErrorlD=3, check bit ErrorID=4,
stop bit ErrorlD=5.

System error Err_Sym, or slave

COM2 485
16#32 ModbusRTU_Slave2

16#33 Slave function enable failed .

enable is turned on.

) Check detailed parameter

16#34 Slave read and write error i

settings

Check whether the underlying
16#35 Failed to open serial port COM2 |serial port number corresponds

to the hardware.

)) Check the SlavelD number

16#36 SlavelD setting failed

settings of the master node.
Check whether the data bit
Data bit, stop bit or parity bit setting|setting value is 7 or 8, whether

16#37
failed the check bitis 0, 1 or 2, and
COM2 485 whether the stop bitis 1 or 2.
ModbusRTU_Master) . System error Err_Sym, or master
16#38 Master function enable failed . -
2 enable is turned on.
. Check that the master-slave
One of the the following goes o
. . initialization parameter
wrong: master read/write coil, read) o)
16#39))) i configuration is consistent and
holding register, write a single N
)))) that the hardware connection is
register, write multiple registers
correct.
Ensure that only one of the
Two function block enabled at the) .y .
16#3A . function block is enabled in the
same time.
program
o Check the underlying
16#60 Error configuring slave IP i . i
corresponding configuration.
16#61 Port setting error Check the port settings
Failed to listen to sockets (failed to i
. . Check the corresponding
16#62 create socket, failed to bind socket,) i
. . configuration.
failed to listen to socket)
modbusTCP_Slave .
)) Check the corresponding
16#63 Failed to accept client . i
configuration.
. . Check the corresponding
16#64 Failed to accept client data) i
configuration.
Check the corresponding
16#65 Modbus reply error (modbus_reply) . i
configuration.
) Check the IP setting or whether it
16#66 Error setting slave IP or port . .
is the default unit number.
16#67 Failed to set slave node Check the parameter settings.
modbusTCP_Master -
. Check the parameter settings,
16#68 Failed to connect slave node
such as slave IP or port.
16#69 Write slave register failure Check the parameter settings.

-82-

AX series programmable controller software manual

Device Diagnosis

Digital tube .
Module Fault type Solution
Fault code
16#6A Read slave register failure Check the parameter settings.
- Check whether the wires are
16#A0 Channel 0 is disconnected.
connected properly.
Channel 0 exceeds the limits (that
is, the voltage exceeds the range of . .
Check if the input voltage
16#A1 -25V—+25V, and the current ne np g
(current) is out of range.
exceeds the range of -104mA—
104mA)
Channel 0 exceeds the upper limit .
Reduce the input voltage
of the range (exceeds the upper .
16#A2 o (current) value, or use a wider
limit of the currently selected .
range of conversion modes.
voltage range)
Channel 0 exceeds the lower limit .
Increase the input voltage
of the range (exceeds the lower .
16#A3 o (current) value, or use a wider
limit of the currently selected .
range of conversion modes.
voltage range)
- Check whether the wires are
16#A4 Channel 1 is disconnected.
connected properly.
Channel 1 exceeds the limits (that
is, the voltage exceeds the range of . .
¢ ¢ Check if the input voltage
16#A5 -25V-+25V, and the current (current) is out of range
exceeds the range of -104mA— ge.
104mA)
Channel 1 exceeds the upper limit .
Reduce the input voltage
of the range (exceeds the upper .
16#A6 o (current) value, or use a wider
Analog output limit of the currently selected .
range of conversion modes.
module voltage range)
AX-EM-4AD Channel 1 exceeds the lower limit .
Increase the input voltage
of the range (exceeds the lower .
16#A7 o (current) value, or use a wider
limit of the currently selected .
range of conversion modes.
voltage range)
- Check whether the wires are
16#A8 Channel 2 is disconnected.
connected properly.
Channel 2 exceeds the limits (that
is, the voltage exceeds the range of . .
Check if the input voltage
164A9 -25V—+25V, and the current ne np g
(current) is out of range.
exceeds the range of -104mA-—
104mA)
Channel 2 exceeds the upper limit .
Reduce the input voltage
of the range (exceeds the upper .
16#AA . (current) value, or use a wider
limit of the currently selected .
range of conversion modes.
voltage range)
Channel 2 exceeds the lower limit .
Increase the input voltage
of the range (exceeds the lower .
16#Ab o (current) value, or use a wider
limit of the currently selected .
range of conversion modes.
voltage range)
Check whether the wires are
16#AC Channel 3 is disconnected.
connected properly.
Channel 3 exceeds the limits (that
is, the voltage exceeds the range of|Check if the input voltage
16#Ad .
-25V—+25V, and the current (current) is out of range.
exceeds the range of -104mA—

-83-

AX series programmable controller software manual

Device Diagnosis

Digital tube .
Module Fault type Solution
Fault code
104mA)
Channel 3 exceeds the upper limit .
Reduce the input voltage
of the range (exceeds the upper)
16#AE o (current) value, or use a wider
limit of the currently selected .
range of conversion modes.
voltage range)
Channel 3 exceeds the lower limit i
Increase the input voltage
of the range (exceeds the lower)
16#AF o (current) value, or use a wider
limit of the currently selected)
range of conversion modes.
voltage range)
. |Check whether the current
The current output of channel O is o
16#b0) channel is disconnected and
disconnected. T
reconnect it if it is
. |Check whether the voltage
The voltage output of channel 0 is . o
16#b1 o channel is short-circuited. If so,
short-circuited.)
restore it to normal.
. |Check whether the current
The current output of channel 1 is o
16#b2) channel is disconnected and
disconnected. .
reconnect it if it is
. |Check whether the voltage
The voltage output of channel 1 is . o
16#b3 . channel is short-circuited. If so,
short-circuited.)
restore it to normal.
Analog output . |Check whether the current
The current output of channel 2 is o
16#b4 module) channel is disconnected and
disconnected. .
AX-EM-4DA reconnect it if it is
. |Check whether the voltage
The voltage output of channel 2 is . .
16#b5 L channel is short-circuited. If so,
short-circuited.)
restore it to normal.
. |Check whether the current
The current output of channel 3 is -
16#b6) channel is disconnected and
disconnected. T
reconnect it if it is
. |Check whether the voltage
The voltage output of channel 3 is . o
16#b7 . channel is short-circuited. If so,
short-circuited. .
restore it to normal.
Check whether the 24V power
The 24V power board of the output .
16#b8 o supply is normal and whether
module is disconnected. :)
there is reverse connection.
Channel 0 exceeds the upper limit |Check whether the set
16#CO0 of range (the actual temperature |temperature upper limit is greater
exceeds the set upper limit) than the actual value.
Channel 0 exceeds the lower limit |Check whether the set
16#C1 of range (the actual temperature |temperature lower limit is smaller
exceeds the set lower limit) than the actual value.
Temperature module |Channel 1 exceeds the upper limit |Check whether the set
16#C2 AX-EM-4PTC of range (the actual temperature |temperature upper limit is greater
exceeds the set upper limit) than the actual value.
Channel 1 exceeds the lower limit |Check whether the set
16#C3 of range (the actual temperature |temperature lower limit is smaller
exceeds the set lower limit) than the actual value.
16#C4 Channel 2 exceeds the upper limit |Check whether the set

-84-

AX series programmable controller software manual Device Diagnosis

Digital tube .
Module Fault type Solution
Fault code
of range (the actual temperature |temperature upper limit is greater
exceeds the set upper limit) than the actual value.
Channel 2 exceeds the lower limit |Check whether the set
16#C5 of range (the actual temperature |temperature lower limit is smaller
exceeds the set lower limit) than the actual value.
Channel 3 exceeds the upper limit |Check whether the set
16#C6 of range (the actual temperature |temperature upper limit is greater
exceeds the set upper limit) than the actual value.
Channel 3 exceeds the lower limit |Check whether the set
16#C7 of range (the actual temperature |temperature lower limit is smaller

exceeds the set lower limit) than the actual value.

o) Check whether the set
Over-limit setting error (set upper .
16#C8 o .. |temperature upper limit is greater
limit is smaller than the lower limit)

than the lower limit.

Channel 0 is disconnected.

16#C9

(Reserved)

Channel 1 is disconnected.
16#CA

(Reserved)

Channel 2 is disconnected.
16#CB

(Reserved)

Channel 3 is disconnected.
16#CC

(Reserved)

-85-

AX series programmable controller software manual Controller Program Structure and Execution

6 Controller Program Structure and Execution

6.1 Program structure

The software model is represented by a hierarchical structure. Each layer implies many characteristics of the underlying
layer. The software model describes the basic software elements and their interrelationships. These software elements
contain: devices, applications, tasks, global variables, access paths, and application objects. Figure 6-1 shows their
internal structure, which is consistent with the software model of the IEC 61131-3 standard.

Device

Application Application

Task 1 Task 2 Task 3 Task 4

Program 1 Program 2 Program/? Program 4

FB1 FB2 FB1 FB2

Global and direct address variable

Access path

A

\ J

Communication function

Figure 6-1 Program hierarchical structure
6.2 Task

A program can be written in different programming languages. A typical program consists of a number of interconnected
function blocks that can exchange data with each other. The execution of different parts of a program is controlled by
"tasks". Tasks can be configured to cause a series of programs or blocks to execute periodically or to be triggered by a
specific event to start execution.

The Task Manager tab in the device tree can be used to control the execution of other subprograms within the project, in
addition to the specific controller_PRG program. A task is used to specify the properties of a program organization unit at
run time. It is an execution control element with the ability to be called. Multiple tasks can be established in a task
configuration, and multiple program organization units can be called in a task. Once the task is set, it can control the
program to execute periodically or to be triggered by a specific event to start execution.

In the task configuration, define it with name, priority, and startup type of the task. This startup type can be defined either
by time (cyclic, random) or by the timing of an internal or external trigger task, such as a rising edge of a Boolean global
variable or a particular event in the system. For each task, you can set a sequence of programs to be started by the task. If
this task is executed in the current cycle, these programs will be processed within one cycle. The combination of priority
and conditions will determine the timing of task execution. The task setting interface is shown in Figure 6-2.

-86-

AX series programmable controller software manual

Controller Program Structure and Execution

| pevices v 3 x
=13 Untitled2 -
= [Device VT AX7X)
=8 pLC Logic
= I} Application
m Library Manager
=] PLC_PRG (PRG)
:
EtherCAT _Task
= & MairTask
& pLC_PRG
% HIGH_PULSE_IO
= I‘_'] EtherCAT_Master_SoftMotion (EtherCAT Master Softl
B INVT_DA200_262 (DA200-N EtherCAT(CoE) Drive)
. SoftMotion General Axis Pool

<

POUs > 3 X
=13 Untited2 -l
G‘ Project Settings

& MainTask x| [

Configuration

Priority (0..31)

Type

Cydic

v

Watchdog
Enable

EtherCAT_Master_SoftMotion

Interval (e.g. t£200ms)

@ Task Configuration

t£20ms

Time (e.g. t#200ms) [t¥200ms|

Sensitivity

4k Add Call < Remove Call (& Change Call Move Up Move Down

*=Open P

POU

&) PLC_PRG

Comment

Figure 6-2 Task configuration interface

The programmer must follow the following rules:

1.

2.

5.

The maximum number of cyclic tasks is 100.

The maximum number of free running tasks is 100.

The maximum number of event-triggered tasks is 100.

Depending on the target system, the PLC_PRG may be executed as a free program under any circumstances,

instead of being manually inserted into the task configuration.

Programs are processed and called in a top-down order within the task editor.

6.3 Program execution

The following figure describes in detail the complete process of program execution inside the AX series programmable
controller. The main process includes input sampling, program execution and output refresh.

Read

input

A

Image register

Task 1

Task 2

A

Image register

A

Write output

N

Figure 6-3 Controller execution

-87-

1. Input sample

2. Program
execution

3. Output refresh

AX series programmable controller software manual Controller Program Structure and Execution

1) Input sampling

At the beginning of each scan cycle, the controller detects the state of the input device (such as switch, button) and writes
the state to the input image register area. During program execution, the running system reads data from the input image
area for program resolution. It is important to note that the input refresh only occurs at the beginning of a scan. During the
scan, the input state will not change even if the output state changes.

2) Program execution

During the program execution phase of the scan cycle, the controller reads the status and data from the input image area
or output image area and performs logical and arithmetic operations according to the commands. The operation results
are stored in the corresponding unit in output image area. In this phase, only the contents in the input image registers
remain unchanged, and the contents in other image registers will change with the execution of the program.

3) Output refresh

During the output refresh phase, also known as the write output phase, the controller transmits the state and data in the
output image area to the output point, and isolates and amplifies the power in a certain way to drive the external load. The
programmable controller completes not only the tasks of the above three phases, but also auxiliary tasks such as internal
diagnosis, communication, public processing, and input/output services in a scan cycle.

The AX series programmable controller repeats the process of 1) to 3) above, and the time for each repetition is one work
cycle (or scan cycle). It can be seen from the scanning method of the controller that the controller has a shorter scanning
time to complete the control task to quickly respond to the change of input and output data, and the duty cycle is generally
controlled within the order of ms. Therefore, it is necessary to develop a stable, reliable and fast-response real-time
system for AX series programmable controller operation system.

Since the AX series programmable controller adopts a cyclic working mode, the input signal will only be refreshed at the
beginning of each cycle, and the output will be concentrated at the end of each cycle. It will inevitably produce a lag
between the output signal and the input signal. It takes a while for a signal input to change from the input of the AX series
programmable controller to the output of the controller to respond to the change in the input signal. Lag time is an
important parameter that should be understood when designing AX series programmable controller control system.
Generally, the lag time is related to the following factors:

1. Filter time of the input circuit. It is determined by the time constant of the hardware RC filter circuit. The input lag time
can be adjusted by changing the time constant. For example, Table 6-1 shows the technical parameters of the
AX-EM-1600D digital input module, where "port filter time" indicates that the filter time of this input module is 10ms.

Table 6-1 AX-EM-1600D Digital input module parameters

Item Specifications

Input channel 16

Input connection mode

18-point terminal

Input voltage level

24V (up to 30V)

Input current (typical) 4.7mA
ON voltage >15VDC
OFF voltage <5VDC
Port filter time 10ms
Input resistance 5.4kQ

Input signal form

Voltage DC input

Isolation method

Optocoupler

Input dynamic display

When the input is valid, the indicator is on.

2. Lag time of the output circuit. It is related to the output circuit mode. Generally, the lag time of the relay output mode

is about 10ms, and the lag time of the transistor output mode is less than 1ms.

3. Working mode of the controller cyclic scanning.

4. Arrangement of statements in the user program.

-88-

AX series programmable controller software manual Controller Program Structure and Execution

To allow readers to better understand the whole process, the following is a simple example of the ladder diagram program
to show its input and output and how the lagging is produced The program logic is shown in Figure 6-4.

bInput bOutput

| I []

Figure 6-4 AX series programmable controller program

binput has a hardware mapping relationship with the external input button. When the button is pressed, binput is ON.
bOutput has a hardware mapping relationship with the coil of the external relay. When bOutput is ON, the coil of the relay
will also be energized. Within the AX series programmable controller, the handling relationship is shown in Figure 6-6.
binput is not immediately turned ON when the input button is pressed. Because the input sampling is only executed at the
beginning of a cycle and the button signal has missed the sampling phase, it usually will be executed at the beginning of
the next cycle. In the program in Figure 6-6, the state of binput is assigned to bOutput. Since there is a certain program
calculation during the program running, the bOutput needs a certain processing time of the program to be set to ON. Since
the output refresh occurs at the end of the program process, it is at the end of the cycle that the bOutput passes its value
to the actual hardware via the output refresh function before the coil is finally energized. The following figure is a relatively
ideal state, with the final output having only one cycle of latency.

Program cycle time
Program processing time
% / - : Input refresh

0 END;0 END;0 L] - output fresh

. OFF
Button input . |
[[|
binput OFF : ' |
| \
OFF l |
bOutput }
|
FF
Coil output o : ~

Delay time
(Min. 1 cycles)

Figure 6-5 Fastest output case

In addition, we should also consider the worse situation. When a cycle of input sampling has just ended, the external input
button is ON at this time. Since the input signal needs to be loaded into the input image area at the beginning of the next
cycle and the actual output will not be loaded into the output image area until the end of the second cycle, the whole
process is shown in Figure 6.7. In this case, the output delay is nearly 2 cycles, which is the output with longest delay

time.
Program cycle time
: Program processing time
/ - : Input refresh

0 END:D END:0 |:| : Output refresh

. OFF
Button input ' |

|

binput I OFF | ' |
! | .
I OFF |

bOutput }
|

FF
Coil output : 0 =
Delay time

(Min. 2 cycles)

Figure 6-6 Slowest output case

-89-

AX series programmable controller software manual Controller Program Structure and Execution

6.4 Task execution type

At the top of the task configuration tree, there is a Task Configuration tab, which shows every defined task by their
names. The call of POUs for specific tasks is not displayed in the task configuration tree. Each individual task can be
edited and configured for the type of execution, which includes Cyclic, Event, Freewheeling, and Status. See Figure 6-7

for details.

Type

@3 Cydic

& Event
¢ Bxternal

5, Freewheeling
Status

Figure 6-7 Task execution type

1. Cyclic

The processing time of the program will vary depending on whether the commands used in the program are executed or
not. Therefore, the actual execution time varies with each scan cycle. By using the cyclic mode, the program can be
executed repeatedly for a certain cycle time. Even if the execution time of the program changes, the refresh interval can
be maintained. It is recommended that you give priority to the cyclic start mode. For example, if you set the corresponding
task to the Cyclic mode and set the interval to 10ms, the actual program execution timing is shown in Figure 6-8.

Actual execution time of

the program
Waiting time
END END END END
Button input ! ! ! ! L
8ms 2ms 6ms 4ms 7ms 3ms 8ms 2ms
0ms 10ms 10ms 0ms

Y
& Fixed cycle setting time

Figure 6-8 Cyclic execution sequence

If the actual execution time of the program is less than the set cyclic time, the remaining time is used for waiting. If there
are low-priority tasks in the application that have not been executed, the remaining waiting time is used to execute these
tasks. The priority of the task will be described in detail later.

2. Freewheeling

Tasks are processed as soon as the program starts running, and tasks will be automatically restarted in the next cycle
after the end of a running cycle. This execution mode is not affected by the program scan cycle. That is to ensure that the
last instruction of the program is executed each time before entering the next cycle. Otherwise, the program cycle will not
end. Figure 6-9 shows the timing of freewheeling sequence.

Actual execution time

{ of the program
END;0 END;0 END;0 END;0 END;O END
| |

8ms ' 6ms 7ms 3ms 8ms ' 7ms

Figure 6-9 Timing of freewheeling sequence

Since the freewheeling execution mode does not have a fixed task time, the execution time may be different each time.
Therefore, the real-time performance of the program cannot be guaranteed, and this mode is seldom used in practical

applications.

-90-

AX series programmable controller software manual Controller Program Structure and Execution

3. Event
If the variable in the event area gets a rising edge, the task begins.
4, Status

If the variable in the event area is TRUE, the task begins. The Status mode is similar to the Event mode, except that the
task will be executed when the trigger variable of status triggering is TRUE, and will not be executed when it is FALSE.
The event trigger only collects the effective signal of the rising edge of the trigger variable. Figure 6-10 compares the
event and status trigger modes, and the green solid line is the Boolean variable status selected by the two modes. Table
6-2 shows the comparison result.

I2 I3 |4

Figure 6-10 Task input trigger signal

Different types of tasks showed different responses at sampling points 1-4 (purple). The trigger condition of Status mode
is fulfilled when a specific event is TRUE, but an event-driven task requires the event to change from FALSE to TRUE. If
the sampling frequency of the task is too low, the rising edge of the event may not be detected.

Table 6-2 Comparison result between Event and Status trigger modes

Execution point 1 2 3 4
Event No execute Execute Execute Execute
Status No execute Execute No execute No execute

6.5 Task priority

1. Task priority setting

You can set the priority of the task, with a total of 32 levels (a number from 0 to 31, with O the highest priority and 31 the
lowest priority). When a program is executing, tasks with high priority takes precedence over tasks with low priority. A task
with high priority O can interrupt the execution of lower priority programs in the same resource, so that the execution of the
program with low priority is slowed down.

Note: When assigning task priority levels, do not assign tasks with the same priority. If there are other task views that
precede tasks with the same priority, the result may be uncertain and unpredictable.

If the task type is "Cyclic", it will be executed in a cycle according to the time set in "Interval". The specific settings are
shown in Figure 6-11.

Configuration

Priority (0.31): |1l

Type
& Cydic v Interval (e.g. t£200ms) |t#20ms

Figure 6-11 Cyclic mode configuration
Example: Suppose there are 3 different tasks with three different priority levels, the specific assignments are as follows.
-: Task 1 with Priority set to 0 and Interval to 10ms
-: Task 2 with Priority set to 1 and Interval to 30ms

-: Task 3 with Priority set to 2 and Interval to 40ms

-01-

AX series programmable controller software manual Controller Program Structure and Execution

Inside the controller, the timing relationship of each task is shown in Figure 6-13, and the specific description is as follows:

0-10ms: Execute Task 1 first (highest priority), and if the program is finished within this cycle, the remaining time will be
used to execute the Task 2 program. However, if Task 2 has not been fully executed afterl0Oms, Task 2 will be interrupted
because Task 1 is executed every 10 milliseconds and has a highest priority.

10-20ms: Execute the programs in Task 1 first. If there is any time left, execute the unfinished Task 2 in the previous
cycle.

20-30ms: Since Task 2 is executed every 30ms and Task 2 has been finished within 10-20ms, there is no need to
execute task 2 at this time, just execute Task 1 once.

30-40Ms: Similar to before.

40-50ms: Task 3 appears at this time. Since Task 3 has the lowest priority, Task 3 can only be executed after ensuring
that Task 2 has been thoroughly executed.

0 10 20 30 40 50 t(ms)

Task 1 interrupts Task 1 interrupts
Task2. Task 3.

Figure 6-12 Task interrupt execution order
2. AX7xtask priority configuration

When the upper computer software of AX series controller creates a new standard project, MainTask is created by default
in the task configuration with a priority of 1. The priority of newly created tasks is also 1 by default, but to ensure that
important tasks such as motion control are prioritized, the performance of the controller can be used appropriately in some
applications that require high-performance motion control (MC). The following table shows the recommended task priority
order setting (if there is only one task, the task priority can be set at will):

Table 6-3 Task priority configuration

Task Type Recommended Priority
PlcCfg module 31
ModbusTCP 15-30
ModbusRTU 15-30
High-speed 1/0 1-15
Analog input/output 1-15
Temperature module 1-15
EtherCAT 0

The smaller the priority value, the higher the priority. POU with a higher priority can interrupt the execution of POU with a
lower priority, as shown in Figure 6-13, where ECT stands for EtherCAT.

-02-

AX series programmable controller software manual Controller Program Structure and Execution

ETC cycle (priority0) ETC cycle ETC cycle ETC cycle ETC cycle
UPR | M UPR | M UPR | M UPR | M UPR | M
10 G c 10 G c 10 G c 10 G c 10 G c
Execution P Execution Execution Execution Execution

complete i complete complete complete complete
i sk cycle (priority16)

—

Pause 10 | UPRG.. Pause UPRG Pause 10 | UPRG..

Execution
complete

Task cycle (priority 17)

Pause IR Pause ..UPRG.. Pause SR Execution

complete

Figure 6-13 POU execution sequence
As shown in Figure 6-13,

When the controller executes a task, there is a time alignment point that is not observed by the user, as shown on the left
side of the figure above. Starting at this point, the execution will start in the order of highest priority -> second highest
priority -> lowest priority.

A low-priority task may be interrupted by a high-priority task while it is being executed, and when the execution of the
high-priority task is complete, the interrupted task with low-priority will continues.

The EtherCAT task is the highest priority task, which is entered according to the EtherCAT cycle, and all POUs within the
task are executed once before executing the lower priority task.

3. Requirements for execution cycle setting in task configuration

The AX series system upper computer software uses multitasking to execute the "tasks" of the user program, and each
"task" is assigned a different execution cycle. Some global variables may be accessed and modified in different POUs, so
the interactive synchronization of global variables should be carried out at the "time alignment point" of the task. For the
cycle of a cyclic task setting, the cycle time of different cyclic task types is an integer multiple.

For example, the EtherCAT task cycle time is set to 4ms, 8ms, while the normal cycle is set to 400ms, and the cycle of
lower priority is set to 100ms or 200ms. Do not set the EtherCAT task cycle to 5ms, 7ms, 9ms and so on, which may cause
non-integer multiple of 2.

4. Configuring sub-device bus cycle options

Under the Controller settings > Bus cycle > Bus cycle task of the controller device, the Bus cycle task list provides the
tasks defined in the task configuration of the current valid project (such as "MainTask", "EtherCAT Master”). Select one of
the tasks as the bus cycle of the current project, or select the option <unspecified>, which means that the shortest task
cycle time or the fastest execution cycle will be applied. You can switch to another settings, but be sure to note the
following.

Before modifying the <unspecified> setting, be aware that it is a default action defined by the device description. By
default, the task can be defined with a shortest cycle time or a longest cycle time. Please check this carefully before
applying this setting.

Therefore, select the task corresponding to each module in EtherCAT 1/O when using expansion modules and EtherCAT
modules (especially the EtherCAT_Master_SoftMotion module) to improve the stability of the system. The reference
program is shown in Figure 6-14.

-03-

AX series programmable controller software manual

Controller Program Structure and Execution

Figure

B Untitled2 project® - Invtmatic Studio
File Edit View Project Build Online Debug Tools Window Help
e E & [R = (7' | ¥4 | Application [Device: PLC Logic] ~ O ${ -
Devices > B %) EtherCAT_Master_SoftMotion X 5] POU £ Task & Task 1 o
=) Unbitled2 ‘| -
General Bus Cyde Optons
= (@ Dewv VT AX7X]
() Device 2T AX70) Bus cyde task EtherCAT Task v
= B0 Pcrogc Sync Unit Assignment Use parent bus cyde seting
=) Application EtherCAT Task
ManTask
D Lorary Manager Log Task
[PLc_pRG (PRG)
) rou Fre) EtherCAT 10 Mapping
=88 Tosk Configuration EtherCAT IEC Objects
& EtherCAT Task
= & MainTask Status
@) pLC_PRG
formati
@ Task Information
& Task_1
'8 HIGH_PULSE IO
= (@ EthercAT Master_SoftMotion (EtherCAT Master Soft
@ pwT_DA200_262 (DA200-N EtherCAT(CoE) Drive|
"3 SoftMotion General Ais Pool
< >
POUS v B X
= 13 Unbtied? =]
B Project settings
< >
Messages - Total 0 error(s), 0 warning(s), 3 message(s)
Devices - [© 0error(s) [® 0 warning(s) |o 3 message(s) | X ¥
Description Project Object]
Lastbuid: @ 0 ® 0 Precompie Project user: (nob

6-14 EtherCAT bus cycle task setting

6.6 Operation of multiple subprograms

In practical projects, the program can usually be divided into many subprograms according to the control flow or the object

of the equipment. The designer can program each processing unit separately. As shown in Figure 6-15, the main program

is divided into multiple subprograms with different processes through the control flow. The main purpose of the division is

to make the main program clearer and facilitate future debugging.

Main Program
PLC_PRG

Sub-program

PRG1 Control flow 1

After program
spliting

Sub-program

PRG? Control flow 2

A .
>

Sub-program

PRGN Control flow n

Figure 6-15 Split in multiple subprograms by process

The right part of Figure 6-15 displays the subprograms PRG1, PRG2...PRGn classified by the flow. The left part of the
figure displays the main program PLC _PRG. The PRG1...PRGn subprograms can be called separately in the main

program. There are two ways to run multiple subprograms. One is to add subprograms in the task configuration. The other

is to call subprograms from the main program, which is more common and flexible.

1. Add subprograms in task configuration

Users can add subprograms in the task configuration page to realize the operation of multiple programs. Click Add Call to

-94-

AX series programmable controller software manual Controller Program Structure and Execution

add subprograms in the order in which they are executed. As shown in Figure 6-16, after adding subprograms, the tasks
will be executed in the top-to-bottom order specified by the user, or you can edit the order manually by using the Move Up
and Move Down functions.

g Add Call Remove Cal

hange Call love De en PO
POU Comment

&) pLC_PRG

] POU

& pou_1

Figure 6-16 Add subprograms in a task
2. Call subprograms from main program PLC_PRG

PLC_PRG is the default main program of the system. In a sense, it can be understood as the battery of a car. In the
production of a car, each part is assembled, which is equivalent to the writing of subprograms. When the car is assembled,
it is necessary to check whether the car is usable. If you want to start the car, you must start the engine, lights and other
parts through the battery which is equivalent to the entry point for starting the car. By calling the program in this way, the
program becomes more operable and flexible. You can add judgment statements and use nesting in the program.

PLC_PRG is a special POU that runs by default with a coasting mode. This POU is called every control cycle by default
without any additional task configuration. The configuration of the POU can be found in the task configuration. It can be
used to call other subprograms and add necessary condition selection at the time of the call, or nest subprograms to make
program calling more flexible. To implement the call relationship in Figure 6-17, write the following code in the main
program PLC _PRG.

POU 1 POU 3
PLC PRG POU_30:
POU_40);
Main program | POU_10);
POU_2();
POU 2

Figure 6-17 POU calling sequence

As shown in the Figure 6-17, the main program is PLC_PRG, which uses structured text programming language, and the
program content is POU_1(); POU_2();.

The main function of the above programs is to call and execute POU_1 and POU_2 subprograms respectively. And
POU_1 calls POU_3 and POU_4 respectively. The AX series programmable controller actually executes the programs in
the following order:

A. AX series programmable controller program executes POU_1 first.

B. Since POU_3 and POU_4 are called sequentially in POU_1, POU_3 is executed first.
C. Execute POU_4 to complete POU_1.

D. Finally execute POU_2 to complete a full task cycle.

Repeating the above steps Ato D is the internal execution sequence of the AX series programmable controller.

-05-

AX series programmable controller software manual EtherCAT Bus Motion Control

7 EtherCAT Bus Motion Control

7.1 EtherCAT operation principle
7.1.1 Protocol introduction

EtherCAT overcomes the inherent limitations of other Ethernet solutions. : On the one hand the Ethernet packet is no
longer received then interpreted and process data then copied at every device, but the EtherCAT slave devices read the
data addressed to them while the frame passes through the node. Similarly, input data is inserted while the telegram
passes through. In the whole process, the frames are only delayed by a few nanoseconds.

The frame send by the master is passed through to the next device until it reaches the end of the segment (or branch).
The last device detects an open port and therefore sends the frame back to the master. On the other hand, an EtherCAT
frame comprises the data of many devices both in sending and receiving direction within one Ethernet frame. The usable
data rate increases to over 90 %. The full-duplex features of 100 Mb/s TX are fully utilized, so that effective data rates of >
100 Mb/s (> 90 % of 2 x 100 Mb/s) can be achieved.

The EtherCAT master uses standard Ethernet Medium Access Controllers (MACs) without extra communication
processors. Thus an EtherCAT master can be implemented on any equipment controller that provides an Ethernet
interface, independently of the operating system or application environment. The EtherCAT slave uses an EtherCAT Slave
Controller (ESC) for processing the data on-the-fly. Thus the performance of the network is not determined by the
microcontroller performance of the slave but is handled complete in hardware. A process data interface (PDI) to the
slave'‘s application offers a Dual-Port-RAM (DPRAM) for data exchange.

Precise synchronization is particularly important in a wide range of distribution processes that require simultaneous
actions, such as when several servo axes are performing simultaneous tasks. Precise calibration of distributed clocks is
the most effective solution for synchronization. In the communication system, the stepwise calibration clock has the
tolerance of error delay to a certain extent, compared with the fully synchronous communication.

7.1.2 Work counter WKC

The end of each EtherCAT message has a 16-bit working counter, WKC. WKC is a working counter used to record the
number of reads and writes to the EtherCAT slave device. The EtherCAT slave controller calculates WKC in the hardware.
The master receives the return data and checks the WKC in the sub-message. If WKC is not equal to the expected value,
the sub-message has not been processed correctly. When a sub-message passes through a certain slave node, WKC will
be increased by 1 if it is a single read or write operation. If it is a read and write operation, WKC will be increased by 1
upon read success, by 2 upon write success and by 3 upon complete. WKC is the accumulation of the processing results
of each slave. The description of WKC increment is shown in Table 7-1.

Table 7-1 WKC increment

Command Data type Increment
Read failed —
Read
Read succeeded +1
] Write failed -
Write :
Write succeeded +1
Failed _
) Read succeeded +1
Read/write -
Write succeeded +2
Read and write succeeded +3

-06-

AX series programmable controller software manual EtherCAT Bus Motion Control

7.1.3 Addressing mode

EtherCAT communication is realized by the master sending EtherCAT data frames to read and write the internal storage
area of the slave device. EtherCAT messages use multiple addressing modes to operate the ESC internal storage area for
multiple communication services. The addressing mode of EtherCAT is shown in Figure 7-1. An EtherCAT network
segment is equivalent to an Ethernet device. The master first uses the MAC address of the Ethernet data frame header to
address the network segment, and then uses the 32-bit address in the EtherCAT sub-message header to address the
device in the segment. There are two ways to achieve in-segment addressing: device addressing and logical addressing.
Device addressing performs read and write operations for a certain slave node. Logical addressing is oriented to process
data and can be multicast. The same sub-message can read and write multiple slave devices.

Ethernet data frame header
address

i Addressing by the Addressing by site Process data
| physical site where number addressing
i the device connected

EtherCAT sub-message header
address area

T

Figure 7-1 Addressing mode of EtherCAT
7.1.3.1 Segment addressing
Depending on how the EtherCAT master and its segment are connected, the segment can be addressed in two ways.
1. Direct connection mode

An EtherCAT segment is directly connected to the standard Ethernet port of the master device, as shown in Figure 7-2. In
this case, the master uses the broadcast MAC address and the EtherCAT data frame is shown in Figure 7-3.

EtherCAT segment equals one Ethernet device

! |
! |
! |
§ 1
I
Master . | Slave Slave Slave Slave Slave Slave 1
device . | device device device device device device !
! |
! |
I
[i [1 [1 [1 [1 | 3
e 1
Figure 7-2 EtherCAT segment in direct connection mode
6 bytes 6 bytes 2 bytes 2 bytes 44-1498 bytes 4 bytes
AN A A
Destination address: Source address: Frame type EtherCAT message
FF FF FF FF FF FF FF FF FF FF FF FF (0x88A4) header EtherCAT data pcs

Figure 7-3 Addressing mode of EtherCAT in direct connection mode

2. Open mode

-97-

AX series programmable controller software manual

EtherCAT Bus Motion Control

EtherCAT segment is connected to a standard Ethernet switch, as shown in Figure 7-4. In this case, a segment needs a
MAC address and the address in the EtherCAT data frame sent by the master is the MAC address of the segment it
controls, as shown in Figure 7-5. The first slave device in the EtherCAT segment has an ISO/IEC 8802.3 MAC address,
which represents the entire segment. This slave is called a segment address slave, which can exchange the destination
address area and source address area in the Ethernet. If EtherCAT data frame is sent over UDP, the device will also
exchange the source and destination IP addresses and the source and destination UDP port numbers, making the

response frame fully complied with the UDP/IP protocol.

! |
i EtherCAT segment equals one Ethernet device !
! Slave !
i device |
Master ! with Slave Slave Slave Slave Slave i
device . i segment device device device device device !
Switch | address |
Cooooooo } }
| [|1 | 1 |1 |1 |1] |
3 i
Common Ether o 1
. i EtherCAT segment equals one Ethernet device !
device ! Slave i
i device !
[! with Slave Slave Slave Slave Slave i
i segment device device device device device !
[address !
Master ! !
device | |1 |1 [1 | 1 [1] !
L]
Figure 7-4 EtherCAT segment in open mode
6 bytes 6 bytes 2 bytes 2 bytes 44-1498 bytes 4 bytes
A A AN N A A
Destination address: Source address: Frame type EtherCAT
Segment MAC address Master MAC address (0x88A4) message head EtherCAT data PCS

Figure 7-5 Addressing mode of EtherCAT in open mode

7.1.3.2 Device addressing

During device addressing, the 32-bit address in the EtherCAT sub-message header is divided into a 16-bit slave device
address and a 16-bit slave device internal physical storage space address, as shown in Figure 7-6. The 16-bit slave

device address can address 65535 slave devices, and each device can have up to 64 local address spaces.

Only one unique slave device is addressed per message in the device addressing mode, but there are two different
mechanisms for addressing devices.

8Bit 8Bit 32Bit 11Bit 2 1 1 1 16Bit
Command Index Address area Length R c R M Statue bit
16Bit 16Bit
Sequence Slave sequence Memory offset ‘ Sequence
addressing address address addressing
Setting Slave setting Memory offset Setting
addressing address address ‘ addressing
Logic . Logic
addressing Logic address 4— addressing

3. Sequential addressing

Fo

=

Figure 7-6 EtherCAT device addressing structure

-08-

sequential addressing, the address of a slave is determined by its connection location within the segment, with a

AX series programmable controller software manual EtherCAT Bus Motion Control

negative number indicating the location of each slave within the segment as determined by the wiring sequence. When
the sequential addressing sub-message passes through each slave device, its sequential address is increased by 1.
When the slave receives a message, the message with a sequential address of 0 is the message addressed to it. This
mechanism is also known as "automatic incremental addressing" because it updates the device address as the message
passes through.

In Figure 7-7, there are three slave devices in the segment that are sequentially addressed as 0, -1, -2, and so on. When
the master uses sequential addressing to access the slave, the address change of the sub-message is shown in Figure
7.8. The master station sends 3 sub-messages to address 3 slave nodes, where the addresses are 0, -1 and -2
respectively, and the data frame is 1 as shown in the figure. When the data frame reaches the slave @, the slave @
checks that the address in sub-message 1 is 0, thus knowing that sub-message 1 is the message addressed to itself. After
the data frame passes through the slave @), all sequential addresses are increased by 1, called 1, 0 and -1, as shown in
the data frame 2 in Figure 7-8. When the data frame reaches the slave @), the slave @ finds that the address in
sub-message 2 is 0, which is its own message. Similarly, subsequent slave nodes are addressed in this way. As shown in
Figure 7.7, in actual engineering applications, sequential addressing is mainly used in the startup phase, and the master
node configures a site address for each slave node. After that, the slave node can be addressed using a site address that
is independent of their physical location. The sequential addressing mechanism can be used to automatically address the
slave node, as shown in Figure 7-8.

0x0000(0) OXFFFF(-1) OXFFFE(-2)
=
0 g
als - = .
Hinin 00 OO OO0
N 0O
() [ow
Figure 7-7 Sequentially addressed slave address
Sub-message 1 Sub-message 2 Sub-message 3
Data frame 1 0 OxFFFF | .. OXFFFE

(G -2)

Sequence address from which the master station sends a message, i.e. the address to reach the slave station @.

Data frame 2 1 o e OX(F:T)FF

Sequential address of the message after being processed by the slave @, i.e. the address that reaches the slave @

Data frame 3 2 1 0

Sequential address of the message after being processed by the slave @), i.e. the address that reaches the slave @

Figure 7-8 Change of sub-message address during sequential addressing

4. Setting addressing

When setting addressing, the slave node address is independent of its sequential order within the network segment. As
shown in Figure 7-9, the address can be configured by the master to the slave in the data link start-up phase, or loaded by
the configuration data of the slave in the power-on initialization phase, and then read by the master in the link start-up
phase using the sequential addressing mode to set the address of each slave node. Its message structure is shown in
Figure 7-10.

-99-

AX series programmable controller software manual EtherCAT Bus Motion Control

1000 1234 5678
IPC |:| '_l '_l
=,
Ul Ul g
il 00 = ~
Hinin 00 OO OO0
Ui (L 0O
() [ow @
@ ®

Figure 7-9 Slave address in setting addressing mode

Sub-message 1 Sub-message 2 Sub-message 3

Data
frame1| 1000 | eee ee 1234 | eee e 5678 | eee e

Figure 7-10 Message structure in setting addressing mode

5. Logic addressing

For logical addressing, the slave address is not defined separately, but using a section of the 4GB logical address space
in the addressing section. The 32-bit address area within the message is used as the overall data logical address to
complete the logical addressing of the device. The logical addressing mode is implemented by the Fieldbus Memory
Management Unit (FMMU). The FMMU function is located inside each ESC and maps the local physical storage address
of the slave to the logical address of the segment. The schematic diagram is shown in Figure 7-11.

-
. l'.l‘ :
= ol B}
o'C=
3 1 —] 1
v WYY vYYVYVY v
Sub Sub Sub
‘ Ethernet header| header 1 PLC data header 2 NC data [EEnETm Data n ‘ CRC ‘
4 4 T
Datan |«
PLC data [«
NC data
Sub-message 1 Sub-message 2 Sub-message n

Figure 7-11 FMMU operating Principle

When receiving an EtherCAT sub-message of data logic addressing, the slave device will check for an FMMU unit
address match. If the match exists, the slave device will insert the input type data into the corresponding position in the

EtherCAT sub-message data area, and extracts the output type data from the corresponding position in the EtherCAT
sub-message data area.

-100-

AX series programmable controller software manual EtherCAT Bus Motion Control

7.1.4 Distributed clocks
7.1.4.1 Concepts

In applications with spatially distributed processes requiring simultaneous actions, exact synchronization is particularly
important. For example, this is the case for applications in which multiple servo axes execute coordinated movements.
With this mechanism, the slave device clocks can be precisely adjusted to this reference clock. The first slave connected
to the master with distributed clocking functions acts as a reference clock to synchronize the slave clocks of the other
devices and the master. To achieve precise clock synchronization control, it is necessary to measure and calculate the
data transmission delay and local clock offset, and to compensate for the drift of the local clock. The following 6 concepts
are involved in the synchronization of the clock.

1. Systemtime

The system time is the system timing used by the distributed clock. It starts at 0:00 on January 1, 2001, and is expressed
in a 64-bit binary variable in nanoseconds (ns) and can be timed for up to 500 years. It can also be expressed as a 32-bit
binary variable with a maximum of 4.2s, which is usually used for communication and time stamping.

2. Reference clock and slave clock

The EtherCAT protocol defines the first slave connected to the master with distributed clocking functions acts as a
reference clock, and the clocks of other slave nodes are called slave clocks. The reference clock is used to synchronize
the slave clocks and the master clock of other slave devices. The reference clock provides the EtherCAT system time.

3. Master clock

The EtherCAT master station also has a timing function, which is called the master clock. The master clock can be
synchronized as a slave clock in a distributed clock system. In the initialization phase, the master can send the master
clock to the reference clock slaves in system time format, which enables the distribution clocks to be timed using system
time.

4. Local clock, initial offset and clock drift

Each DC slave has a local clock, which runs independently and is timed using the local clock signal. When the system
starts, there is a certain difference between the local clock and the reference clock of each slave, which is called the initial
clock offset. During operation, due to the fact that the reference clock and the DC slave clock use their own clock sources,
their timing cycles drift to a certain extent, which will lead to the clock running out of sync and the local clock drifting.
Therefore, the initial clock offset and clock drift must be compensated.

5. Local system time

The local clock of each DC slave generates a local system time after compensation and synchronization. The distributed
clock synchronization mechanism is to keep the local system time of each slave consistent. The reference clock is also
the local system clock of the corresponding slave.

6. Transmission delay

There will be a certain delay when data frames are transmitted between slaves, which includes device internal and
physical connection delays. Therefore, when synchronizing slave clocks, the transmission delay between the reference
clock and multiple slave clocks should be considered.

7.1.4.2 Clock synchronization process
Clock synchronization consists of the following three steps:
® Transmission delay measurement

When the distributed clock is initialized, the master will initialize the transmission delay for slave nodes in all directions,
calculate the deviation value between the slave clocks and the reference clock, and write it into the slave clock.

® Reference clock offset compensation (system time)

-101-

AX series programmable controller software manual EtherCAT Bus Motion Control

The local clock of each slave will be compared with the system time, and then different comparison results will be written
into different slaves, so that all slaves will get the absolute system time.

® Reference clock drift compensation

Clock drift compensation and local time are used to periodically compensate for local clock errors and fine-tuning. The
following figure illustrates two application cases of compensation calculation. Figure 7-12 shows a case where the system
time is less than the slave local clock. Figure 7-13 shows a case where the system time is greater than the slave local

clock.

1. System time < local time

tsystem

tkn:al

A A
Drift compensation Rx
including system Transmission
time Transmission delay time
delay. .. Offset
"""""""" kol comper?saation
TX et lock
........... o Drift
System Target: Slave clock compensation
time copies system time
» X
Reference clock Slave clock
Figure 7-12 Clock synchronization: system time < local time
2. System time > local time
tsystem tlocal
A A
Target: Slave clock
Tx copies system time Drift
System N~~~ 2 T 1" A | compensation
time
Offset
compensation
.. Rx
Drift compensation®* .,
including system ‘., Transmissiory Transmission
time . “.eféfy delay
: compensation
Local
clock
» X
Reference clock Slave clock

Figure 7-13 Clock synchronization: system time > local time

With EtherCAT, data exchange is completely hardware-based. Due to the logic ring structure of communication (with the
help of the physical layer of full-duplex fast Ethernet), the master clock can simply and accurately determine the delay
offset of slave clock propagation, and vice versa. The distributed clocks are adjusted based on this value, which indicates
that a very precise deterministic synchronization error time base (less than 1 microsecond) can be used across the
network. Its structure is shown in Figure 7-14.

-102-

AX series programmable controller software manual EtherCAT Bus Motion Control

(TS [%35 s WS [5?5 Q?s
L LU | LU | L | | 1

Figure 7-14 Clock synchronization principle

For example, there is a difference of 300 nodes between the two devices, and the cable length is 120 meters. Use an
oscilloscope to capture the communication signal, and the result is shown in Figure 7-15.

-

U

Node 1 interrupt

Synchronization time:15ns

Jitter:+20ns

Node 300 interrupt

O 2.00v - Ch2° 2.00V (H20.0ns)A Chl \ 1.40V

- 1+¥.0.00000 s

Figure 7-15 Performance test of clock synchronization

This function is very important for motion control. In such applications, velocity is typically derived from the measured
position. Even very small jitter in the position measurement timing can translate to larger inaccuracies in the calculated
velocity, especially relative to short cycle times. In EtherCAT, the introduction of time-stamped data types as a logical
extension allows high-resolution system times to be added to the measured value, which is made possible by the huge
bandwidth that Ethernet provides.

-103-

AX series programmable controller software manual EtherCAT Bus Motion Control

7.1.5 EtherCAT cable redundancy

Increasing demands in terms of system availability are catered for with optional cable redundancy that enables devices to
be exchanged without having to shut down the network. Adding redundancy is very inexpensive: the only additional
hardware is another standard Ethernet port (no special card or interface) in the master device and the single cable that
turns the line topology into the ring. Switchover in case of device or cable failure only takes one cycle, so even demanding
motion control applications survive a cable failure without problems.

EtherCAT also supports redundant masters with hot standby functionality. Since the EtherCAT Slave Controllers
immediately return the frame automatically if an interruption is encountered, failure of a device does not necessarily lead
to the complete network being shut down. For example, the standard EtherCAT topology is shown in Figure 7-16 a). If
there is a network interruption between Slave2 and SlaveN-2 in this topology (the red part in the figure), all slave
communication after Slave N-2 is interrupted accordingly. This is also the disadvantage of the standard topology.

EthesCAT Master EtherCAT Master
RX Unit TX Une RX Uit TX Unit
RX ™

CIF1

© © ® ®
Stave | Sove 2
BX | TX - R TR

Slave Nt SHave N
BB ~ RX | TX e RX] TX

Slave 1 Slave 2
RX TX e RX 1T
i

TX L IRX e TX L IRX

TX I RX e T L RX TX [RX et TX [TERX

a) Standard EtherCAT topology b) EtherCAT redundant topology
Figure 7-16 EtherCAT redundancy

Figure 7-16 b) shows the topology structure of the EtherCAT redundancy mode. Only two standard network ports are
needed for the master to realize the topology. With these two ports, all slave nodes can form a loop. Even if the network is
interrupted while in use, such as the disconnected red part in Figure 7-16, the master node will detect the error
immediately and automatically divide the communication into two channels, and all the slave nodes can continue to
communicate to ensure the stable operation of the system.

7.2 EtherCAT communication mode

In actual automation control systems, there are usually two forms of data exchange between applications: time-critical and
time-non-critical. Time critical indicates that a specific action must be completed within a certain time window. If the
communication cannot be completed within the required time window, it may cause control failure. Time-critical data is
usually sent periodically, which is called periodic process data communication. Non-time-critical data can be sent out of
cycle, and non-periodical mailbox data communication is used in EtherCAT.

7.2.1 Periodic process data communication

The master node can use logical read, write or read and write commands to control multiple slaves at the same time. In
the periodic data communication mode, the master and the slave have multiple synchronous operation modes.

1) Slave device synchronization mode
<~ Free running

In free-run mode, the local control cycle is generated by a local timer interrupt. The cycle time can be set by the master,
which is an optional feature of the slave. The local cycle in free-running mode is shown in Figure 7-17. In the figure, T1 is
the time for the local microcontroller to copy data from the EtherCAT slave controller and calculate the output data; T2 is
the output hardware delay, and T3 is the input latch offset time. These parameters reflect the time response performance
of the slave.

-104-

AX series programmable controller software manual EtherCAT Bus Motion Control

Local timer event Local timer event
Cycle time
Min. cycle time
T1 T2 T3

Copy output | | Obtain and copy input

Output valid Input lock
Figure 7-17 Local cycle in free-running mode
< Synchronization to data or output events

The local cycle is triggered on the occurrence of a data input or output event, as shown in Figure 7-18. The master can
write the sending cycle of the process data frame into the slave. The slave will check if this cycle time is supported or if the
cycle time is optimized locally. The slave can choose to support this feature. It is usually synchronized to the data output
event. If the slave only has input data, the data is synchronized to the input event.

Data input/output event Data input/output event
Data Data
frame frame
Cycle time
Min. cycle time
T1 T2 T3
Copy output | | Obtain and copy input
Output valid Input lock

Figure 7-18 Local cycle of synchronization to data input or output events
<~ Synchronization to distributed clock synchronization event

The local cycle is triggered by the SYNC event, as shown in Figure 7-19. The master must complete the transmission of
the data frame before the SYNC event. For this reason, the master clock must also be synchronized with the reference

clock.

SYNC event SYNC event
frame frame
Cycle time
| -— —P
Min. cycle time
<
T1 T2 T3
Copy output | | Obtain and copy input

Output valid Input lock
Figure 7-19 Local cycle of synchronization to SYNC event

-105-

AX series programmable controller software manual EtherCAT Bus Motion Control

To further optimize slave station synchronization performance, the master should copy the output information from the
received process data frame when a data transmission and reception event occurs. After the SYNC signal arrives,
continue the local operation. As shown in Figure 7-20, the data frame must arrive T1 time earlier than the SYNC signal.
The slave has completed data exchange and control calculations before the SYNC event and can perform the output
operation immediately after receiving the SYNC signal, further improving synchronization performance.

Data input/output event Data input/output event
SYNC event SYNC event
Cycle time
frame
Data 4
frame
Min. cycle time
T1 T2 T3
< | <—>

Output valid Input lock

Figure 7-20 Local cycle of the optimized synchronization to SYNC event
2) Master device synchronization mode
There are two synchronization modes for the master.
< Cyclic mode

In cyclic mode, the master periodically sends process data frames. The master’s cycle is usually controlled by a local timer.
The slave node can run in free-running mode or in synchronization to received data event mode. For the slave in
synchronization mode, the master should check that the cycle time of the corresponding process data frame is greater
than the minimum cycle time supported by the slave.

The master can send a variety of periodic process data frames at different cycle times to get the most optimized
bandwidth. For example, a shorter cycle is used to send motion control data and a longer cycle is used to send I/O data.

< DC mode

The master runs in DC mode similarly to cyclic mode, except that the local cycle of the master should be synchronized
with the reference clock. The master's local timer should be adjusted based on the ARMW message that publishes the
reference clock. After the ARMW message used to dynamically compensate clock drift is returned to the master, the
master clock can be adjusted based on the read back reference clock time to be roughly synchronized with the reference
clock time.

In DC mode, all DC-enabled slaves should be synchronized to the DC system time. The master should also synchronize
the other communication cycles with the DC reference clock time. Figure 7-21 shows how the local cycle is synchronized
with the DC reference clock.

-106-

AX series programmable controller software manual EtherCAT Bus Motion Control

Local timer event Local timer event

Application Application

| Master frame
»i

Master additional < DC Base
offset *
Data o Data]
Pre-calculated fixed offset Transmission Master
-1 dey |
SYNC offset

Slave

== |

SO | SO |

R ; R .

SYNC SYNC

Figure 7-21 Master DC mode

The master local run is started by a local timer. The local timer should have an advance over the DC reference clock
timing, which is the sum of the following times.

1. Control program execution time
2. Data frame transmission time
3. Data frame transmission delay (D)

4. Additional offset (U) (Related to the jitter value of the delay time of each slave and the jitter value of the control
program execution time, used for the adjustment of the master cycle)

7.2.2 Non-periodic mailbox data communication

The non-periodical data communication in the EtherCAT protocol is called mailbox data communication, which can be
carried out in both directions, i.e. from the master to the slave and from the slave to the master. It supports full duplex,
two-way independent communication and multi-user protocols. The slave-to-slave communication is managed by the
master as a router. The mailbox communication data header includes an address field that enables the master to resend
mailbox data. Mailbox data communication is a standard way of realizing parameter exchange, and is used if periodic
process data communication or other non-periodic services need to be configured.

The mailbox data message structure is shown in Figure 7-22. Usually the mailbox communication value corresponds to a
slave station, so the device addressing mode is used in the message. The data elements in its data header are listed in
Table 7-2.

Sub header Data WKC
~
~
I >~ <
S~
Mailbox protocol data
I NN
~
I ~
~
Mailbox data Command Command-related data
header

| —————————
| 16Bit 16 Bit 6 Bit 2Bit | T 7Bt — — _4Bit_

Length Address Channel Priorit Type Counter
o "9 ke 32 3 Y a0 PC a4

Figure 7-22 Mailbox data unit structure

-107-

AX series programmable controller software manual EtherCAT Bus Motion Control

Table 7-2 Mailbox data header

Data element Bit Description

Length 16 bits Length of the followed mailbox service data

Slave address of data source for master-to-slave
communication

Address 16 bits o
Slave address of data destination for master-to-slave
communication

Channel 6 bits Reserved

Priority 2 bits Reserved

Mailbox type, i.e. type of subsequent protocol.

0: Mailbox communication error

2: EoE (Ethernet over EtherCAT)

Type 4 hits 3: CoE (CANopen over EtherCAT)

4: FoE (File Access over EtherCAT)

5: SoE (Sercos over EtherCAT)

15: VoE (Vendor Specific Profile over EtherCAT)

Sequence number used for repeated detection, increasing by 1

Counter (Ctr) 4 bits for each new mailbox service (Only 1 to 7 is used for
compatibility with older versions)

<> Master-to-slave communication — write mailbox command

The master sends the write data area command to send mailbox data to the slave. The master will check the work counter
WKC in the slave’s answer message of mailbox command. If the work counter is 1, the write command is successful.
Conversely, if the work counter is not increased, which is usually because the slave did not finish reading the previous
command, or did not respond within a limited time, the master must resend the write mailbox data command.

<> Master-to-slave communication — read mailbox command

To be sent from the slave to the master, the data must first be written to the input mailbox cache and then read by the
master. If there is valid data waiting to be sent from the slave ESC input mailbox data area, the master will send the
appropriate read command to read the slave data as soon as possible. There are two ways for the master to determine
whether the slave has filled the mailbox data into the input data area. One is to use FMMU to periodically read a certain
flag bit. Logical addressing can be used to read the flags of multiple slave s, but the disadvantage is that each slave
requires an FMMU unit. The other way is to input a simple rotation training ESC into the input area of the mailbox. An
increase of 1 in the work counter of the read command indicates that the slave has populated the input data area with new
data.

7.3 EtherCAT state machine

EtherCAT State Machine (ESM) coordinates the state of the master and slave applications at initialization and runtime.
The EtherCAT device must support four states and an optional state.

Init: initialization, abbreviated as |I.
Pre-Operational: abbreviated as P.
Safe-Operational: abbreviated as S.

Operational: abbreviated as O.

S R S

Boot-Strap: (Optional) abbreviated as B.

The conversion relationship between the above states is shown in Figure 7-23. When the state is converted from the
initialization state to the operational state, the conversion must be done in the order of "Init > Pre-Operational >
Safe-Operational > Operational > Boot-Strap”. The leapfrog conversion is only available when returning from the
Operational state. The Boot-Strap state is optional and is only allowed to convert to and from the Init state. All state

-108-

AX series programmable controller software manual EtherCAT Bus Motion Control

changes are initiated by the master node, which sends a state control command to the slave to request a new state, and
the slave responds to this command by performing the requested state conversion and writing the result to the slave state
indicator variable. If the requested state conversion fails, the slave will give an error flag. Table 7-3 shows the summary of
state conversions.

| Initialize
APy | (PA A | A
v sn[1®y ©)
| Pre-Operational | {_ BootStrap |
A A | T
(PS) |(SP
©1 | (o) v
| Safe-Operational
A
(SO) (0S)
Y
Operational |

Figure 7-23 EtherCAT state conversion
< Init

The initialization state defines the initial communication relationship between the master and the slave at the application
layer. At this time, the master and the slave cannot communicate directly at the application layer, and the master uses the
initialization state to initialize some configuration registers of the ESC. If the master supports mailbox communication,
configure the mailbox communication parameters.

< Pre-Operational

In Pre-Operational state, mailbox communication is activated. The master and slave can use mailbox communication to
exchange application-related initialization operations and parameters. Process data communication is not allowed in this
state.

<~ Safe-Operational

In Safe-Operational state, the slave application reads the input data, but does not generate an output signal. The device
has no output and is in a "safe state". In this case, mailbox communication is still available.

<> Operational

In Operational state, the slave application reads data, the master application sends out output data, and the slave device
generates an output signal. In this case, mailbox communication is still available.

<~ Boot-Strap

The function of the boot strap state is to download the device firmware program. The master can download a new
firmware program to the slave using FoE protocol mailbox communication.

Table 7-3 State conversion of EtherCAT state machine

State and state o
. Description
conversion
Init There is no communication at the application layer, and the master can
ni
only read and write ESC registers.
The master configures the slave site address register.
. Configure mailbox channel parameters if mailbox communication is
Init to Pre-OP
(IP) supported.
Configure DC related registers if distributed clocks are supported.
The master writes state control register to request "Pre-Op" state.
Pre-Operational Mailbox data communication at application layer

-109-

AX series programmable controller software manual EtherCAT Bus Motion Control

State and state o
. Description
conversion

The master uses mailboxes to initialize process data mapping.

The master configures the SM channel used for data communication.
The master configures FMMU.

The master writes state control register to request "Safe-Op" state.

Pre-Op to Safe-Op (PS)

The master sends valid output data.

Safe-Operational))
The master writes state control register to request "Op" state.

. All inputs and outputs are valid.
Operational

Mailbox communication is still available.

7.4 EtherCAT servo drive controller application protocol

IEC 61800 standard series is a general specification for variable speed electronic power drive systems. IEC 61800-7
defines the standard of communication interface between control system and power drive system, including network
communication technology and application profile, as shown in Figure 7-24. EtherCAT, as a network communication
technology, supports the profile CiA 402 in the CANopen protocol and the application layer of the SERCOS protocol,
which are called CoE and SoE respectively.

IEC 61800-7 --Power drive system general interface and application profile

IEC 61800-7-1 - Define interface

General Power Drive System Interface Specification

Appendix A Appendix B Appendix C Appendix D
Profile type 1 mapping Profile type 2 mapping Profile type 3 mapping Profile type 4 mapping
(CiA 402) (CIP Motion) (PROFIdrive) (SERCOS)

IEC:61800-7-200 = Apply profile specification

IEC 61800-7-201
Profile type 1
(CiA 402)

IEC 61800-7-202
Profile type 2
(CIP Motion)

IEC 61800-7-203
Profile type 3
(PROFIdrive)

IEC 61800-7-204
Profile type 4
(SERCOS)

IEC 61800-7-300: = Map profiles-to the- communication network technology

IEC 61800-7-301
Map profile type 1 to:

e CANopen
e EtherCAT
e ETHERNET
e PowerLink

IEC 61800-7-302
Map profile type 2 to:
® DeviceNet

® ControlNet
® EtherNet/IP

IEC 61800-7-303
Map profile type 3 to:

® PROFIBUS
® PROFINET

IEC 61800-7-304
Map profile type 4 to:
e SERCOS [+1I

e SERCOSIII
e EtherCAT

Figure 7-24 |IEC 61800-7 architecture

7.4.1 EtherCAT-based CAN application protocol (CoE)

CANopen device and application profiles are available for a wide range of device classes and applications, ranging from
I/O components, drives, encoders, proportional valves and hydraulic controllers to application profiles for plastic or textile
machinery, for example. EtherCAT can provide the same communication mechanisms as the familiar CANopen
mechanisms: object dictionary, PDO (process data objects) and SDO (service data objects) — even the network
management is comparable. EtherCAT can thus be implemented with minimum effort on devices equipped with CANopen.
Large parts of the CANopen firmware can be reused. Objects can optionally be expanded in order to account for the larger
bandwidth offered by EtherCAT.

-110-

AX series programmable controller software manual EtherCAT Bus Motion Control

The EtherCAT protocol supports the CANopen protocol at the application level and is supplemented by the following main
features:

® Network initialization by accessing the CANopen object dictionary and objects using mailbox communication

® Network management by using CANopen application objects and optional time-driven PDO messages.

® Mapping process data, cyclic transmission command data and state data by object dictionary.

Figure 7-25 shows the CoE device structure whose communication modes mainly include periodic process data

communication and non-periodic data communication. The following section will introduce the differences between both
modes in practical applications.

EtherCAT device

EtherCAT application

¢ '

Object dictionary Process data
SDO PDO mapping
A A
CoE CoE
Mailbox Process data

EtherCAT slave device

Ethernet physical layer

\ 4

Figure 7-25 CoE device structure
7.4.1.1 CoE object dictionary

The CoE protocol fully complies with the CANopen protocol and has the same object dictionary definition as shown in
Table 7-4.

Table 7-5 lists the CoE communication data objects, which extend the relevant communication objects 0x1C00-0x1C4F
for EtherCAT communication to set the type of storage synchronization manager, communication parameters and PDO
data allocation.

Table 7-4 CoE object dictionary definition

Index number range Description

0x0000—-0x0FFF Data type description
Communication objects include:

0x1000-0x1FFF device type, identifier, PDO mapping, CANopen-compatible data object
for CANopen. EtherCAT extension data object is reserved in EtherCAT.

0x2000-0x5FFF Manufacturer definition object

0x6000—-0x9FFF Profile definition data object

0xA000-OxFFFF Reserved

-111-

AX series programmable controller software manual EtherCAT Bus Motion Control

Table 7-5 CoE communication data object

Index Description
0x1000 Device type
0x1001 Error register
0x1008 Vendor device name
0x1009 Manufacturer hardware version
0x100A Manufacturer software version
0x1018 Device identifier
0x1600-0x17FF RxPDO mapping
0x1A00-0x1BFF TxPDO mapping
0x1C00 Sync manager communication type
0x0x1C10-0x1C2F Process data communication sync manager PDO assignment
0x0x1C30-0x1C4F Synchronization management parameters

7.4.1.2 CoE periodic process data communication (PDO)

In periodic data communication, the process data can contain multiple PDO mapping data objects. The data objects
0x1C10 to 0x1C2F used by the CoE protocol define the corresponding PDO mapping channels. Table 7-6 shows the
specific structure of the communication data in the EtherCAT protocol.

Table 7-6 CoE communication data object

Index Object type Description Type
0x1C10 Array SMO PDO assignment Unsigned integer 16-bit
0x1C11 Array SM1 PDO assignment Unsigned integer 16-bit
0x1C12 Array SM2 PDO assignment Unsigned integer 16-bit
0x1C13 Array SM3 PDO assignment Unsigned integer 16-bit
0x1C2F Array SM31 PDO assignment Unsigned integer 16-bit

The following uses the allocation for SM2 PDO (0x1C12) as an example and Table 7-7 lists its value. If two data are
mapped in PDOO, the first communication variable will be the control word with the corresponding mapped index and
sub-index address 0x6040:00, and the second communication variable is the target position value with the corresponding
mapped index and sub-index address 0x607A:00.

Table 7-7 Example of SM2 channel PDO assign object data 0x1C12

0X1C12 Numeric PDO data object mapping
Sub-index value Sub-index | Numeric value | Bytes Description
N f PD
0 3 1 umt?er 0 . o
mapping objects
0 2 1 Number of data mapping
PDOO data objects
1
0x1600 1 0x6040: 00 2 Control word
2 0x607A: 00 4 Target position

-112-

AX series programmable controller software manual EtherCAT Bus Motion Control

0X1C12 Numeric PDO data object mapping
Sub-index value Sub-index | Numeric value Bytes Description
0) 1 Number of dat-a mapping
PDO1 data objects
! 0x1601 1 0x6071: 00 2 Target torque
2 0x6087: 00 4 Target ramp
0) 1 Number of da'fa mapping
PDO2 data objects
! 0x1602 1 0x6073: 00 2 Max. current
2 0x6075: 00 4 Motor rated current

There are several PDO mapping modes:
1. Simple devices do not require mapping protocols

® Use simple process data

) Read in the EEPROM of the slave
2. Readable PDO mapping

® Fix process data mapping

® Read with SDO communication
3. Selectable PDO mapping

® Multiple fixed PDO groups are selected by object 0x1C1X

® Read through SDO communication

4. Variable PDO mapping

® Configure through CoE communication

7.4.1.3 CoE non-periodic process data communication (SDO)

The EtherCAT master enables non-periodic data communication via reading and writing mailbox data SM channels. The

CoE protocol mailbox data structure is shown in Figure 7-26.

8 bytes 2 bytes 1478 bytes at most
Mailbox Elata header CoE command Command-related data
type=3(CoE)
9 bit 3 bit apbit |
Number Reserved Type

Figure 7-26 CoE data header

-113-

AX series programmable controller software manual EtherCAT Bus Motion Control

The numbered part in Figure 7-26 is explained in detail in Table 7-8.

Table 7-8 CoE command definition

CoE command field Description

No. Number when PDO is sent

Message type:

: Reserved

: Emergency information

: SDO request

: SDO response

: TxPDO

: RxPDO

: Remote TxPDO send request

Type

: Remote RxPDO send request

0 N O A W N PO

: SDO information
9-15: Reserved

< SDO service

CoE communication service types 2 and 3 are SDO communication services, and the SDO data structure is shown in
Figure 7-27.

6 bytes 2 bytes 1478 bytes at most
Mailbox data header CoE
type=3(CoE) command Command-related data
Type=2 or 3 f f
| 8 bit 16 bit 8 bit 32 bit 1-1470 bit |
SDO control Index Sub-index data Optional data

Standard CANopen data frame

Figure 7-27 SDO data frame format

SDO usually has three transmission modes. Table 7-9 shows the specific content of the SDO data frame. Its structure is
shown in Figure 7-28:

Fast transmission service: As with the standard CANopen protocol, only 8 bytes are used and up to 4 bytes of valid data
can be transmitted.

Regular transmission service: More than 8 bytes can be used to transmit more than 4 bytes of valid data. The maximum
valid data that can be transmitted depends on the storage area capacity managed by the mailbox SM.

Segmented transmission service: Use this service when the capacity of the mailbox is exceeded.

Table 7-9 CoE data frame content

SDO control Standard CANopen SDO service
Index Device object index
Sub-index Sub-index
Data Data in SDO
Data (Optional) ;I;Zt;r:‘ are four bytes of optional data that can be added to the data

-114-

AX series programmable controller software manual

EtherCAT Bus Motion Control

Fast transmission

Regular tranmission

Segmented transmission

Mailbox storage capacity

Mailbox data header

Mailbox data header

Mailbox data header

CoE

CoE

CoE

Data < 4 bytes

4 bytes < Data < Mailbox
size

Data > Mailbox size

Mailbox data header
CoE

Mailbox data header
CoE

Mailbox data header
CoE

Figure 7-28 SDO transmission type

If the data to be transmitted is larger than 4 bytes, the regular transmission service is used. In regular transmission, the 4
data bytes in the fast transmission mode will be used to indicate the full size of the data to be transmitted. The valid data is
transmitted in the extended data section. The maximum size of the valid data is the mailbox capacity minus 16.

7.4.2 Servo drive profile according to IEC 61800-7-204 (SERCOS)

SERCOS is known as a real-time communication interface, especially for motion control applications. The SERCOS
profile for servo drives is included in the international standard IEC61800-7-204. The mapping of this profile to EtherCAT
is defined in section 304 of the standard. The service channel, including access to all drive-internal parameters and
functions, is based on the EtherCAT mailbox. Here too, the focus is on compatibility with the existing protocol (access to
value, attribute, name, units of the IDNs) and expandability with regard to data length limitation. The process data, with
SERCOS in the form of AT and MDT data, are transferred using EtherCAT device protocol mechanisms. The mapping is
similar to the SERCOS mapping. The EtherCAT slave state machine can also be mapped easily to the phases of the
SERCOS protocol.

7.4.2.1 SoE state machine

A comparison between the communication phase of the SERCOS protocol and the EtherCAT state machine is shown in
the Figure 7-29. The SoE state machine is featured as follows:

1. SERCOS protocol communication phase 0 and 1 are overwritten by EtherCAT initialization state.

2. Communication phase 2 corresponds to the operational state, allowing the use of mailbox communication to
implement the service channel and operate IDN parameters.

3. Communication phase 3 corresponds to the safe operational state and starts transmitting periodic data, where only
input data is valid and output data is ignored, implementing clock synchronization.

4. Communication phase 4 corresponds to the operational phase, where all inputs and outputs are valid.

5. Phase switching process commands S-0-0127 (communication phase 3 switchover check) and S-0-0128
(communication phase 4 switchover check) that do not use the SERCOS protocol are replaced by PS and SO state
conversion respectively.

6. The SERCOS protocol only allows switching down from the advanced communication phase to communication phase
0, whereas EtherCAT allows any state switching down (as shown in a) in Figure 7-29. For example, switching from the
operational state to the safe operational state or from the safe operational state to the pre-operational state. The SoE
should also support this switchover as shown in b) in Figure 7-29. If the slave does not support this switchover, set the
error bit in the EtherCAT AL state register.

-115-

AX series programmable controller software manual EtherCAT Bus Motion Control

IEC 61784
EtherCAT CPE 16
‘ Init ‘ ‘ Communication phase 1 ‘

(IP)|| (PI)

Pre-operational ‘ (Sh Communication phase

2

(PS)|| (SP)
©n (5-0-0127)
(OP) f Safe-operational ‘ Communication phase 3

(with input)

(SO)|| (0S)
‘ (S-0-0128) H
Operational ‘ ‘ Communication phase 4 W
a) EtherCAT state machine b) SERCOS state machine

Figure 7-29 SoE state machine
7.4.2.2 IDN inheritance

The SoE protocol inherits the DIN parameter definition of the SERCOS protocol. Each IDN parameter has a unique 16-bit
IDN, which corresponds to a unique data block that holds all information about the parameter. The data block consists of 7
elements, as listed in Table 7-10. The IDN parameters are divided into standard data and product data, and each part
consists of eight parameter groups with different IDN, as listed in Table 7-11.

Table 7-10 IDN data block structure

No. Name
Element 1 IDN
Element 2 Name
Element 3 Attribute
Element 4 Unit
Element 5 Minimum allowable value
Element 6 Maximum allowable value
Element 7 Data value

Table 7-11 IDN number definition

Bit 15 14-12 11-0
Meaning Classification Parameter group Parameter number
0: Standard data (S)
Value 0-7: 8 parameter groups 0000-4095
1: Product data (P)

When using EtherCAT as a communication network, some IDNs in the SERCOS protocol for communication interface
control have been deleted, as listed in Table 7-12. And some IDN has been modified, as listed in

Table 7-13.
Table 7-12 Deleted IDN

IDN IDN description
S-0-0003 Minimum start time of AT sending
S-0-0004 Time between sending and receiving state switching
S-0-0005 Minimum feedback sampling lead time
S-0-0009 Start address in the master data message

-116-

AX series programmable controller software manual EtherCAT Bus Motion Control

IDN IDN description

S-0-0010 Master data message length

S-0-0088 Recovery time required for receiving MSTs after receiving MDTs
S-0-0090 Command processing time
S-0-0127 Communications phase 3 switchover check
S-0-0128 Communications phase 4 switchover check
Table 7-13 Modified IDN
Original L
IDN o Updated description
description
S-0-0006 Start time of AT Time offset in which an application writes AT data to ESC
sending memory after a synchronization signal within the slave.
Communication
S-0-0014) Map slave DL state and AL state code.
interface state
MST error
S-0-0028 Map the slave RX error counter to the loss counter.
technology
5-0-0089 Start time of MDT | Time offset of obtaining MDT data from ESC memory after a
sending synchronization signal within the slave.

7.4.2.3 SoE periodic process data

Output process data (MDT data content) and input process data (AT data content) are configured by S-0-0015, S-0-0016
and S-0-0024. The process data only includes periodic process data, but not service channel data. The output process
data includes servo control words and command data, while the input process includes status words and feedback data.
S-0-0015 sets the type of periodic process data, as listed in Table 7-14, and the definition of parameters S-0-0016 and
S-0-0024 are listed in Table 7-15. The master writes these three parameters via mailbox communication during the
Pre-Operational phase to configure the contents of the periodic process data.

Table 7-14 Definition of parameter S-0-0015

S-0-0015

Command data

Feedback data

0: Standard type O

None

No feedback data

1: Standard type 1

Torque command S-0-0080 (2 bytes)

No feedback data

2: Standard type 2

Speed command S-0-0036 (4 bytes)

Speed feedback S-0-0053 (4 bytes)

3: Standard type 3

Speed command S-0-0036 (4 bytes)

Position feedback S-0-0051 (4 bytes)

Speed command S-0-0036 (4 bytes)

Position command S-0-0047 (4
4: Standard type 4 (Speed feedback S-0-0053 (4 bytes)
bytes)
Position feedback S-0-0051 (4 bytes)
Position command S-0-0047 (4
Or speed feedback S-0-0053 (4
5: Standard type 5 bytes)

bytes) +
Position feedback S-0-0051 (4 bytes)

6: Standard type 6

Speed command S-0-0036 (4 bytes)

No feedback data

7: Custom

S-0-0024 configuration

S-0-0016 configuration

-117-

AX series programmable controller software manual EtherCAT Bus Motion Control

Table 7-15 Definition of parameters S-0-0016 and S-0-0016

Data word S-0-0024 definition S-0-0016 definition
Maximum length of output data) .
0 Maximum length of input data (Word)
(Word)
1 Actual length of output data (Word) Actual length of input data (Word)
2 First IDN of command data mapping | First IDN of feedback data mapping
3 Second IDN of command data | Second IDN of feedback data

mapping mapping

7.4.2.4 SoE non-periodic service channels

The EtherCAT SoE Service Channel (SSC) is done by the EtherCAT mailbox communication function, which is used for
non-periodic data exchange, such as reading and writing IDNs and their elements. The SoE data header format is shown
in Figure 7-30.

6 bytes 4 bytes 1476 bytes at most
Mailbox data header SOE command Command-related
type=5(SoE) data
I 3hit 1 bit 1 bit 3 bit 8 bit 16 bit !
Subsequent Operation
Command data Error | Address element ID IDN

Figure 7-30 SoE data header format

Table 7-16 SoE data command description

Data area Description

Command type:
0x01: Read request
0x02: Read response
0x03: Write request
Command)
0x04: Write response
0x05: bulletin

0x06: Slave information

0x07: Reserved

Subsequent data signal:
Subsequent data | 0x00: No subsequent data frame
0x01: Transmission incomplete, with subsequent data frame

Error signal:
Error 0x00: No error
0x01: Error occurred, 2-byte error code in data area

Address Specific address of the slave device

Element selection for single element operation, defined by bit, with each bit

Operation element .
corresponding to one element.

identification)
Number of elements for addressing constructs

IDN number of the parameter, or the remaining segments during the segment
operation

IDN

-118-

AX series programmable controller software manual EtherCAT Bus Motion Control

Commonly used SSC operations include SSC read operations, SSC write operations, and process commands.

SSC read operation: The master initiates the SSC read operation and writes the SSC request to the slave. After
receiving the read operation request, the slave responds with the requested IDN number and data value. The master
can read multiple elements at the same time, so the slave should answer multiple elements. If the slave only
supports single element operation, it should respond with the first element requested.

SSC write operation: This operation is used to download data from the master to the slave, which should answer with
the result of the write operation. Segment operation consists of one or more segmented write operations and an SSC
write response service.

SSC process command: A process command is a special non-periodic data. Each process command has a unique
IDN and specified data elements, which are used to start certain specific functions or processes of the servo device.
It usually takes a while to execute these functions or processes. The process command only triggers the start of the
process, so after that, the service channel it occupies will become immediately available for the transfer of other
non-periodic data or process commands. There is no need to wait until the triggered functions or processes to
complete their execution.

-119-

AX series programmable controller software manual Application Programming

8 Application Programming

8.1 Single axis control
8.1.1 Single axis control programming description

The motion control of the AX series controller with the servo axis (such as DA200) is implemented based on the EtherCAT
bus network. Each EtherCAT bus cycle will perform a calculation and issue a control command to control the servo.
Different from the previous pulse control mode, EtherCAT bus is entirely based on the software. Pay attention to the
following points when applying:

® MC-related POUs should be configured to execute under the EtherCAT task. Most MC function blocks cannot run
normally when placed in the POU of the low-priority Main tasks.

® The PDO configuration table needs to be configured with relevant data objects. Otherwise the servo will not be able
to run due to the missing communication data object configuration. No error alarm will be generated for this case,
making it more difficult to troubleshoot.

® The controller can set the parameters of the servo by configuring SDO.

® MC function block instance can only be used for a unique servo axis control. Error occurs if it is used for multiple
Servo axis controls.

® MC function block must be used to monitor the running servo axis to avoid error caused by program logic jump
without MC function block monitoring. Such error is usually difficult to detect.

® Pay attention to the safe handling of the debugging, and ensure that the signal configuration is consistent with the
practical application. If the servo system uses incremental encoder, zeroing is required prior to normal operation. For
movements within a limited range (e.g. a screw), limit and safety signals should be set.

8.1.2 MC function blocks commonly used for single-axis control

MC function block (FB) is also known as MC command. In fact, the object instance of MC function block is used in the
user program, and the servo axis is controlled by MC object instance, for example:

MC Powerl: MC Power;//Statement instance MC_Powerl
MC Powerl (Axis=Axisl,)

Single-axis control is generally used for positioning control, that is, the servo motor drives the external mechanism to
move to the specified position. Sometimes the servo is required to run at a specified speed or torque. In single-axis control,
the following MC function blocks are commonly used:

Table 8-1 MC function blocks commonly used for single-axis control

Control operation Required MC command Description
Run this command to enable the servo axis to
Enable servo MC_Power i
perform subsequent running control.
o Command the servo to run to a specified
Absolute positioning MC_MoveAbsolute))
coordinate point.
) o) Runs the specified distance with the current
Relative positioning MC_MoveRelative)
location as a reference.
The jog operation of the servo motor is often
)) used for low-speed test runs to inspect
Servo jog operation MC_Jog)) .
equipment or adjust the position of the servo
motor.

-120-

AX series programmable controller software manual Application Programming

Control operation Required MC command Description
Relative superposition . Based on the current running command of the
. MC_MoveAdditive - . .
positioning servo, run the specified distance relatively.

Speed control MC_MoveVelocity Command the servo runs at the specified speed.

Command the servo to suspend operation. If

Servo suspend MC_Halt MC_Movexxx is triggered again, the servo can
run again.

Command the servo to stop. The servo can run
Emergency stop MC_Stop again only after the stop command is reset and
MC_Movexxx is triggered.

When the servo stops with an alarm, this
Alarm reset MC_Reset)
- command is used to reset the servo.

Command the servo to start homing operation.
i Both the home signal of the application system
Servo homing MC_Home o)
and the limit signals on both sides are connected

to the DI port of the servo.

Command the control system to start homing

i) operation. Both the home signal of the application
Controller homing MC_Homing o .
system and the limit signals on both sides are

connected to the DI port of the controller.

8.2 Cam synchronization control

Electronic cam (abbreviation ECAM) utilizes the constructed cam curves to simulate the mechanical cam to meet the
relative motion software system between main shaft and camshaft system the same to mechanical cam system.
Electronic cams can be applied to various fields, such as automobile manufacturing, metallurgy, machining, textiles,
printing, and food packaging. The electronic cam curve is a function curve with the main shaft pulse (active shaft) input as
X and the corresponding output of the servo motor (camshaft) as Y=F(X).

rd) _ B

[@

a \C:\

X FX)

Figure 8-1 Electronic cam diagram
The AX series programmable controller electronic cam function has the following features.
® CAM curves are easy to draw: Cams can be described by cam chart, CAM curves or array. It supports multiple cam
chart selection and dynamic switching during running.
CAM curves are easy to correct: The running cam table can be modified dynamically.
Support one master and multiple slaves: one main shaft can have multiple slave shafts corresponding to it.

Cam lifter: multiple cam lifters and multiple setting intervals are allowed.

Cam clutch: It can make the cam enter and exit the cam running through the user program.

-121-

AX series programmable controller software manual Application Programming

® Special functions: Virtual main shaft, phase offset and output superposition are supported.

Note: "online modification of CAM curve" refers to the modification of the key point coordinates of the CAM curve
according to the needs of control characteristics during the execution of the program written by the user. The content to be
modified is generally the key point coordinates, but it can also be the number of key points, the distance range of the main
axis.

The AX series programmable controller electronic cam function contains three control elements:

1. Main shaft: Reference for synchronous control.

2. Slave shaft: a servo axis that follows the movement of the main shaft according to the non-linear characteristics.
3. Cam table: Data table or cam curve describing the relative position, range, periodicity of the master-slave shafts.
The commonly used function blocks related to electronic cam are listed in the following table.

Table 8-2 Commonly used electronic cam function blocks

MC Command Description

Run this command to associate the main shaft, slave shaft and
MC_CamTableSelect

cam table.
MC_Camlin Let the slave shaft enter the cam running
MC_CamOut Let the slave shaft exit the cam running
MC_Phasing Main shaft phase modification

8.2.1 Periodic mode of the cam table

1. Single cycle mode (Periodic:=0): After the cam table cycle is completed, the slave shaft leaves the cam running state,
as shown in Figure 8-2.

MC_CamTableSelect Priodic=0

Slave axis position |

|
|Slave axis position

Master axis position ¥
T 360 360
N O

I
T
0

MC_Camin Execute=1

Figure 8-2 Single cycle mode

2. Periodic mode (Periodic:=1): After the cam table cycle is completed, the slave shaft will start the next cam cycle until
the user program commands it to exit the cam running state, as shown in Figure 8-3.

Slave relative position mode
MC_CamTableSelect SlaveAbsolute:=False /,_ —

| e
|Slave axis poswtion’_/
— |

o |

Slave axis position | | _/"Slave axis position
|

Master axis position

EI
1

|
T
0

MC_Camln Execute=1

Figure 8-3 Periodic mode

-122-

AX series programmable controller software manual Application Programming

8.2.2 Input method of cam table

1. When creating a new cam table, the system will automatically generate the simplest cam curve, on which the user
can edit and customize the CAM curve table.

2. User can increase or decrease the number of key points in the cam curve or change the coordinates of the key
points.

3. The line pattern between the two key points of the cam curve can be set to a straight line or a quantic polynomial,
and the system will optimally optimize each curve to minimize sudden changes in speed and acceleration.

Devices ~ 2 x| 8 pcPrG V@ cam x =
= [+ T
& Untitled3 | cam | cam tabhe[Tappets [Tappet table‘
=@ Device (INVT AX7X) - -
= @0 PLC Logic 2 Properties - Cam [Device: PLC Logic: Application] @ 7 Al
=€ Application 30043 e — 1 I o ccomil
£ Appl
&G % Common | Buid | Access Control| Cam F—
200
() Library Manager = Dimensions
[E] PLC_PRG (PRG) 100- Master start position: 0 Master end position: 360
=
= (24 Task Configuration
‘-’ e MamT:Sk — Slave start position: > SRR =60 master position [u],
8] PLC_PRG Period
3 HIGH_PULSE_IO gT [¥] Smooth transition Slave period: 360
2 SoftMotion General Axis Pool |[| 154
3 / Continuity requirements
1-‘(57 > . [¥] Position] Velocity V| Acceleration [3erk
=
054 3 Compie format -
(@ polynomial (XYVA) Thaston pc:m) | [
one dimensional point array Elements: 256 - T
0.03] /,_ﬁ\ (©) two dimensional point array
0.0:
0.0t master position [u],
20.04 2 40 60 80. 280 =ab 320 340
0 =
004
: o]
0.0005
'S
0.004% = |
ol € L))) ! masteriposition [u]
oMf 2 4 6 0 100 120 140 160 180 200 220 240 260 280 300 320 340

Figure 8-4 CAM curve
8.2.3 Data structure of cam table

Invtmatic Studio contains data structure for each CAM table that describes the feature data of the CAM table. The
following figure describes the data structure of the "CAMO" cam table. Please note the names of the variables in the
structure.

[cam | cam table | Tappets | Tappet table

X Y \% A J SegmentType min(Position) max(Position) max(|Velocity]) max(JAcceleration])
| 0 0 0 0 0
| L Poly5 0 120 1.51200000000... 0.032835282941414...
| @ 120 120 1 0 0
| L Poly5 120 240 £ 0
| @ 240 240 1 0 0
| L Poly5 240 360 1.512 0.032835282941414...
360 360 0 0 0

Figure 8-5 Data structure of cam table

Invtmatic Studio has an internal data structure to characterize the CAM table. We can also write a CAM table manually, or
modify the CAM feature data by accessing the data structure.

Note: When we state the CAMO cam table, the system automatically states the CAMO data structure of the global variable
type by default, along with the CAMO_AJ[i] array. For example, modify the number of key points or coordinates of the CAMO
cam table in the user program.

CAMO. nElements:=10; // Change the number of key points to 10.
CAMO. xEnd:=300; // Change the end point of the main shaft to 300.

//IFor example, modify the coordinates of two key points in the user program.

-123-

AX series programmable controller software manual

Application Programming

CAMO A[2].dx:=10;
CAMO A[2].dy:=30;
CAMO A[2].dv:=1;
CAMO A[2].da:=0;
CAMO A[3].dx:=30;
CAMO A[3].dy:=50;
CAMO A[3].dv:=1;

CAMO A[3].da:=0;

8.2.4 CAM table reference and switch

CAM table is stored in the controller with an array, which can be pointed to by specific MC_CAM_REF variable type, such

as statement:

CAM table g: MC_CAM REF;

You can assign a value to this variable, namely pointing it to a specific CAM table:

CAM table g:= Cam0; //Pointto the required CAM table.

CAM table g: MC CAM REF; // Cam table pointer;

TableID: uint; // Cam table selection command that can be set by HMI;

Case TableID of

0: CAM table g: CAM table A;

1: CAM table g:

CAM table B;

2: CAM table g: = CAM table C;

End case

MC CamTableSelect 0 (//CAM relationship
Master:= Virtual main shaft,
Slave:= CAM slave shaft,

CamTable:= CAM table q,

Execute:= bSelect, // Rising edge triggers CAM table selection.

Periodic:= TRUE,
MasterAbsolute:=FALSE,

SlaveAbsolute:= FALSE) ;

In the above example, the assignment operation of the MC_CAM_REF variable can be used to switch multiple CAM

tables.

-124-

AX series programmable controller software manual Function module command

Appendix A Function module command

A.1 ModbusRTU command library

A.1.1 Definition and use of ModbusRTU master command library variables

A.1.1.1 Variable definition

Module Variable Type Function Remarks
Serial port .
o 0: Inactive
Executel BOOL initialization]
. 1: Active
function
Baudl DINT Baud rate E.g. 115200
)) E.g. 8 bits(without 7-bit
Databits1 INT Data bit
ASCII)
X INPUT X : :
Stopbits1 INT Stop bit E.qg. stop bit 1, stop bit 2
0: No check
Parityl INT Check bit 1: Odd check
ModbusRTU_Master
] 2: Even check
Init_ COM1
-~ Slavel UINT Slave ID 1-128
Timeoutl DINT Timeout time |E.g. 1000
0: Command is executing
bDonel BOOL |Complete sign|l: Command execution
complete
OUTPUT . 0: No error
Errorl BOOL Error sign)
1: Error exists
See ModbusRTU error code
ErroriD1 INT Error code
table.
Read and|0: Inactive
XExecutel BOOL) .)
write function |1: Active
. 0x01, 0x03, 0x05, 0x06,
Fun_Codel INT Function code
0xOF, 0x10
Addrl UINT Address 0x0000—-0OxFFFF
INPUT
Read: 1-250
DataCountl UINT Count .
ModbusRTU_Master Write: 1-240
_Fun_CcOM1 POINTE Point to the address where
DataPtrl R TO|Data pointer |the read and write data is
INT stored.
) 0: No error
Errorl BOOL Error sign .
1: Error exists
OUTPUT
See ModbusRTU error code
ErroriID1 INT Error code abl
able.

When serial port 2 is used as ModbusRTU_Master master, the number of variables in serial port 2 is the same. The
number after the variable name is changed from "1" to "2", e.g. "ModbusRTU_Master_Init_ COM2".

A.1.1.2 How to use

1) ModbusRTU_Master master connects to the slave

-125-

AX series programmable controller software manual

Function module command

Module Setting item Function Example
Executel Sla've enable Enable := TRUE
variable
Baudl Baud rate Baudl := 19200
ModbusRTU_Master | Databitsl Data bit Port :=8
_Init_COM1 Stopbits Stop bit Unit := 1
Parityl Check bit Parityl:=2
Slavel Slave ID Slavel:= 12
Timeoutl Timeout time Delay Time := 1000

To define the ModbusRTU slave to be connected, refer to the above COM1 parameters table for unified configuration. The

reference example (structured text ST) is as follows:

" defined variahle

Figure A-1 Parameter configuration example

" To connect slave

station parameters

~functianal parameter

2) After completing the configuration of the relevant parameters, set the communication function parameters as follows:

Setting item Function Example

RTU communication function enable

xExecutel RW:= TRUE
code

Fun_Codel Function code Fun Codel:=0x03
Start address of the read and write

Addrl . Addr 2001
register
Number of the read and write

DataCountl) Conut := 12
registers
Pointer to the address of the

DataPtrl . ADR (DATE RTUL)
read/write data storage area -

-126-

AX series programmable controller software manual Function module command

1 ModbusRTU Master Init COMI_ 1
2 Executel:= Executel 1,

3 Baudl:= Baudl 1,

- Databitsl:= Datakitsl_1,
5 Stopkitsl:= Stopbkitsl 1,
3 Parityl:= Parityl 1,
Slavel:= slavel 1,

B Timsoutl:= Timeoutl_ 1,

9 bDonel=> ,

10 Errorl=> ,

11 ErrorIDl=>) ;

13 ModbusRTU Master Fun COM1 1
14 xExecutel:= xExecutel 1,

15 Fun Codel:= Fun Codel 1,

16 2ddrl:= addrl 1,

1 DataCountl:= DataCountl 1,
18 DataPtrl:= ADR(DataPtrl 1),
Errorl=> ,

ErrorIDl=>);

BT=]

[

Figure A-2 Parameter configuration example

A.1.2 Definition and use of ModbusRTU slave library variables

A.1.2.1 Variable definition

Module Variable Type Function Remarks
Serial .
lal port 0: Inactive
Executel BOOL | initialization)
. 1: Active
function
Baudl DINT Baud rate |E.g. 115200
Databits1 INT Data bit E.qg. 8 bits, 7 bits
Stopbits1 INT Stop bit |E.g. stop bit 1, stop bit 2
P INPUT P g P P
0: No check
Parity1 INT Check bit |1: Odd check

ModbusRTU_Slavel 2 Even check

Slave_Addrl UINT |[Slave number|1-128

Read and |0: Inactive

Enablel BOOL)]
write function |1: Active

Complete |0: Incomplete

Donel BOOL .
sign 1: Completed
OUTPUT
See ModbusRTU error code

ErrorID1 BYTE Error code

table.

-127-

AX series programmable controller software manual

Function module command

A.1.2.2 How to use

1) Configure serial port parameters to establish Modbus RTU master and slave connections.

Module Setting item Function Example
Executel Slave enable variable Enable := TRUE
Baudl Baud rate Baudl := 19200
Databits1 Data bit Port :=8
ModbusRTU_Slavel Stopbits Stop bit Unit := 1
Parityl Check bit Parityl:=2
Timeoutl Timeout time Delay Time := 1000
Slave_Addrl Slave number Slavel:= 12

Set the slave according to the serial port configuration parameters of the ModbusRTU master, referring to the parameters

in the above table. (Slave_Addrl should map to the Slavel of the master.)

2) ModbusRTU master and ModbusRTU slave perform read and write data communication

Enable Executel to active the ModbusRTU slave. If the function code of the master is 0x03, read the holding register. If

the function code of the master is 0x10, write multiple registers. The corresponding storage area can be defined in the
variable area, and its size should not be less than the size of the data to be written by the ModbusTCP master. If the
master function code is OxOF (write multiple coils) or other function codes, the operation is the same as the above

process.

-128-

AX series programmable controller software manual

Function module command

A.2 ModbusTCP command library

A.2.1 Definition and use of ModbusTCP master command library variables

A.2.1.1 Variable definition

Variable Type Function Remarks
ModbusTCP . .
Enable BOOL . 0: Inactive 1: Active
function
P STRING Slave IP address E.g. “192.168.1.13”
Port DINT Slave port number |E.g. 502
Unit INT Slave unit number |Non-negative integer
DelayTime INT Timeout time Non-negative integer
Function code .)
Fun_Enable BOOL 0: Inactive 1: Active
- enable
0x03: Read multiple registers
) mode
fun_code BYTE Function code .))
- 0x10: Write multiple registers
INPUT
mode
Read and write
Addr UINT . E.g. 2000, 2001
register address
Number of the read|Max. number of the read and
Count INT
and write registers |write registers at once is 120.
CoilSingleData INT Write single coll The value is 0 or 1.
BitPt POINTER TO |Pointer to read and|Save the bit data to be read and
itPtr
BOOL write bit data written
_ |Store the location information of
Read and write
DataPtr POINTER TO INT| . the data read or store the data to
pointer . .
be written to the register.
) 0: Command is executing
Done BOOL Complete sign)
1: Command execution complete
Error OUTPUT BOOL Error sign 0: No error 1: Error exists
See ModbusTCP error code
ErrorlD INT Error code abl
able.

A.2.1.2 How to use

1) ModbusTCP_Master master connects to the slave

Set the parameters of the ModbusTCP slave to be connected in the project monitoring state as shown in the following

table.

Setting item Function Example
Enable Slave enable variable Enable := TRUE
IP address of a Modbus TCP slave connected to
IP address IP := '192.168.1.13"
the master
Port number of a Modbus TCP slave connected
Port Port := ‘502
to the master
. Unit number of a Modbus TCP slave connected
Unit Unit := 3
to the master
Delay Time Function start timeout time Delay Time := 1000

-129-

AX series programmable controller software manual Function module command

When the master accesses a single slave, the above variables should be assigned separately. The reference example
(function block diagram FDB to create the main program) is as follows:

| war
| IP: STRING i=
‘i Enable: BOOL :=

DINT :=
o < —IDefine the

1 DelayTime: INT e]
| Fun Enable : BOOL := O} Parameters

fun_: :
Addr: UINT :»
i UINT :=

.%] OF BOOL:
.0] OF INT:
ModbuasTCE _REQO : ModbusTCP _REQ:
END VAR
ModbusTCP_REQOC
[ModbusTCP_REQ
=1z

- ":!r.er.e

—TiPort ErzociD
: _{,{;e_"h:ﬁconﬁguration
{Ffun_ I 1+

|Fun_Enebl, s rameter

e —fun_code

Addr —iAdds
4 ne

Figure A-3 Parameter configuration example

The function block in the above figure represents an independent ModbusTCP master and slave connection. To add a
new ModbusTCP master and slave connection, create a new function block first, and then configure the new parameters
according to the parameter configuration example in the above figure.

2) After completing the configuration of the relevant parameters, set the communication parameters as follows:

Setting item Function Example

Fun_Enable Function code enable switch Fun Enable:= TRUE

Read and write multiple
fun_code])) Fun code := 3
register coil function -

Start address of the read and
Addr . . Addr := 2001
write register

Number of the read and write
Count . Conut := 12
registers

Pointer to the address of the
DataPtr . ADR (DATE TCP)
read/write data storage area -

Modbus TCF_REQOD
Modbus TCP_REQ

Ip 1P Done
Enable —{Enable Error
Pozt —Pozt rrozID-
Unit —{Unic

DelayTime
Fun_Enshle

fun_codepaad

Parameters
Singievate
T BizPrx
ADR {DataPry) —fDactafrr

Figure A-4 Parameter configuration example

-130-

AX series programmable controller software manual Function module command

Each of the operation blocks in the figure above represents a ModbusTCP request. The figure defines a
ModbusTCP_Master and slave connection. The first and third operation blocks represent the read operation of the holding
register (0X03) of different slaves, and the second and fourth operation blocks represent the writing of a certain number of
data in the registers of different slaves.

To add different communication requests for the above ModbusTCP_Master master and slave connection, create the
same function block and change the communication parameters according to the example in the figure.

A.2.2 Definition and use of ModbusTCP slave command library variables

A.2.2.1 Variable definition

Variable Type Function Remarks
Enable BOOL ModbusTCP_Slave function 0: Inactive 1: Active
Port INPUT DINT Slave port number Default value is 502.
Unit INT Slave unit number Slave unit number (1 -247)
0: Command is executing 1:
Done BOOL Complete sign Command execution
completed
IP address of the local
IP OUTPUT STRING | IP address of the slave machine (cannot be changed
here)
Error BOOL Error sign 0: No error 1: Error exists
ErroriD INT Error code tsebT ModbusTCP error code
able.

A.2.2.2 How to use
(1) ModbusTCP master reads data from ModbusTCP_Slave

Enable Enable to active the ModbusTCP_Slave slave. If the master function code is 0x03, read the holding register. Set
the size of InputSize, create an array of InputSize to store the data to be read by the master, and then assign the address
of the array to the Inputs pointer. If the corresponding master function code is 0x01 (read coil), the operation is the same
as the above process.

(2) ModbusTCP master writes data to ModbusTCP_Slave

Enable Enable to active the ModbusRTU slave. If the function code of the master is 0x10, write multiple registers. The
corresponding storage area can be defined in the variable area, and its size should not be less than the size of the data to
be written by the ModbusTCP master. If the master function code is 0xOF (write multiple coils) or other function codes, the
operation is the same as the above process.

A.3 High-speed I/O library description

CmpHSIO_C library contains function blocks for counting, latching, preset values, pulse width measurement, timing
sampling, count value comparison and other functions. The application required for counting is completed by calling these
function blocks.

A.3.1 Counter_HP

This function block enables single pulse, quadrature, timing, direction + pulse counting.

When a counter is required by other modules, the counting function block will first call this module to set the corresponding
counter. The parameter "Task cycle number of update frequency” is used so that at least 1 pulse change can be read
within the update frequency period. Otherwise the frequency will be displayed as 0. The number of channels ranges from
0 to 7. Due to the interference of high-speed counting input, the filter parameter Filt_Set needs to be set in the device
description file. The recommended value is 2us.

-131-

AX series programmable controller software manual Function module command

Table A-1 Counter

Parameter Type Input/Output type Function
True enables counting and
Enable BOOL IN))
False disables counting.
Channel BYTE IN Number of channels[0,7]
For counter parameters, see
CounterParameter | Counter_Parameter IN CounterParameter
parameter description.
Value DINT ouT Current count value
Frequency DWORD ouT Counting frequency (Hz)
Velocity DWORD ouT Counting velocity (r/min)
True indicates negative
Direction BOOL ouT direction and False indicates
positive direction.
True indicates disconnected
Break BOOL ouT and False indicates
connected.
Error BOOL ouT Error sign
ErrorlD BYTE ouT Error code
Counter_HP
—Enable Value—
—Channel Frequency f—
— CounterParameter Velocityf—
Directionf—
Break—
Errorf—
ErrorlDfF—
Figure A-5 Counter
CounterParameter parameter description
STRUCT Counter_Parameter
MName Type Inherited from Address Initial Comment
Control WORD 1 EHliES =R
TaskPeriodMum BYTE 1 B R EE BT 5 BERSY
UpValue DINT 20000 LERE®E
DownValue DINT -100 TEREERS
Ratio DWORD 10000 3RE
CounterParam_HP
—Enable CounterParameter f—
— Control
— TaskPeriodMum
—{UpValue
— DownValue
—Ratio

-132-

AX series programmable controller software manual Function module command

Control: For settings, please refer to the following Control setting description.

TaskPeriodNum: Set the number of task cycles between the pulse frequency updates.

UpValue: the upper limit value of the counter. This is the maximum value when the count is a linear count.

DownValue: the lower limit value of the counter. This is the minimum value when the count is a linear count.

Ratio: the resolution of the counter, which represents the count value of one revolution, used for frequency calculation.

The following table shows the correspondence between the bit of the control word and function.

Bit Control word Function value description

_ . : Disable
0 Enable counting (timing) . Enable

o : Rated quadrature frequency
1-2 Frequency multiplication mode
: Quadruple quadrature frequency
: Disable

0
1
0
1
0
1: Enable
0
1
2
3
0

3 Clear counting (timing)

. lus
: 10us
: 100us
:1ms

4-6 Timing unit

Single pulse and timing direction,
. . L positive
7 Single pulse and timing direction : o L
1: Single pulse and timing direction,

negative

. 0: Cycle
8 Counting mode .
1: Linear

1: Software trigger write

2: External trigger write, external trigger
source CnT

9-11 Latch control of preset and count value)) . .
3: Comparison consistent trigger write

4: Latch function, external trigger source
CcnT

12-15 Reserved Reserved

A.3.1.1 Single pulse counting

Configure the input port to a counting function and the counting mode to single pulse counting. Each counting channel has
two signals CxA and CxB, where A is pulse input and B is low level, and x is the number of channels, 0 =< x <= 7.
Currently the counter supports a maximum of 8 channels.

Function configuration
A: Counting mode configuration
Counting mode function configuration

//During the counting mode configuration for counter 0 and 1, set single pulse value to 0, the low 4 bits of the byte to
counter 0, and the high 4 bits to counter 1.

xmodea:=16#00;

//During the counting mode configuration for counter 2 and 3, set single pulse value to 0, the low 4 bits of the byte to
counter 2, and the high 4 bits to counter 3.

xmodeb := 16#00;

-133-

AX series programmable controller software manual Function module command

Configure variable mapping for counter mode

"

] ¥Mode_SetA WOBHE BYTE

"

] ¥Mode_Setd WOBH BYTE

"% Application.xmadea

" Application.xmadeb

B: Input terminal function configuration, set to counting function
in0:=1inl:=1;//Set input port to counting function for counter 0.
Input terminal variable mapping

] In0_Configure LoRe BYTE
] In1_Configure oRt BYTE

"% Application.in0
"% Application.inl

C: Signal filter parameters configuration

filt set:= 8;//The unit is 0.25us, which is equivalent to 2us. This value can be adjusted for different

interference.
Filter parameter variable mapping

"% Application. filt_set i Filt_Set ¥eE28 BYTE

D: Control parameter configuration

Set control parameters according to function blocks

Set the control word. The following operation is based on bit.
//[Enable counting

Control.0:=1;

/IFrequency multiplication setting 1: quadruple frequency and only quadrature counting is valid, O: rated

frequency
Control.1:=0;

Control.2:=0;

/[Clear counting 1: Enable O: Disable

Control.3:=0;

//ICounting direction O: Positive 1: negative

Control.7:=0;

/I Counting modes 1: Linear 0: Cycle

Control.8:=0;

//Select timing unit. 0 is 1us, 1 is 10us, 2 is 100us, 3 is 1ms, and this parameter is invalid in non-timing mode.
Control.4:=0;

Control.5:=0;

-134-

AX series programmable controller software manual Function module command

Control.6:=0;
Preset value control:
1 Software trigger write;

2 External trigger write. Select the external trigger source among X8, X9, XA, XB (changed to: CnT, where n is the
count channel, 0 =< n <= 3. Each trigger source corresponds to a count channel).

3 Comparison consistent trigger write
Latch control of count (timing) value:

4 Enable the count value latching. Select the external trigger source among X8, X9, XA, XB (changed to: CnT,
where n is the count channel, 0 =< n <= 3. Each trigger source corresponds to a count channel).

Control.9:=0;
Control.10:=0;

Control.11:=0;

counterparam[0] .Control:= Control;//Control word
counterparam[0] . TaskPeriodNum:=1;//The number of task cycles between the pulse frequency updates
counterparam|[0] .UpValue:=10000000;
counterparam|[0] .DownValue:=-1000;
counterparam[0] .Ratio:=10000;
Program code example
CounterO (
Enable:= TRUE,
Channel:= 0, //Select counter 0. Select a value from [0,7] for other counter.
CounterParameter:=counterparam([0],
Value=> valueO, //Outputcount
Frequency=> fre0, //Output countfrequency value
Velocity=> vel0O, //Output count velocity value
Direction=> ,
Break=> ,
Error=> ,
ErrorID=>);
Time sequence description

CnA

+-1 +-1 +-1

CnB

Figure A-6 Single pulse input diagram

-135-

AX series programmable controller software manual Function module command

Note:

Single-pulse counting needs to be cumulative or subtractive depending on the configured counting direction. In forward
running, the counter will increase by one every time a pulse comes, otherwise it will decrease by one. n indicates counting
channel, 0 =< n<=7.

Single pulse is commonly used in the counting of objects on the production line. The sensor outputs a high-level pulse
every time it detects an object.

A.3.1.2 Quadrature encoder pulses

The quadrature signal is commonly used in the output signal of the quadrature encoder. It contains signals A, B, and Z,
where A and B are pulse signals with a phase difference of 90°, and Z is the origin signal. One pulse is generated per
revolution. Z signal is generally used to clear counters, compensation, and origin positioning. It is barely used in counting.

Configure the input port to a counting function, and the counting mode to a quadrature counting. All 16 input ports can be
selected for quadrature counting. Currently the counter supports a maximum of 8 channels.

Function configuration
A: Counting mode configuration
Counting mode function configuration

//During the counting mode configuration for counter 0 and 1, set quadrature counting value to 1, the low 4 bits of the
byte to counter 0, and the high 4 bits to counter 1.

xmodea:=16#11;

//During the counting mode configuration for counter 2 and 3, set quadrature counting value to 1, the low 4 bits of the
byte to counter 2, and the high 4 bits to counter 3.

xmodeb := 1lo6#11;

Configure variable mapping for counter mode

4

) ¥Mode_SetA %OEE BYTE

4

) XMode_SetB HOEF BYTE

K@ Application. xmodea
K@ Application. xmodeb

B: Input terminal function configuration, set to counting function

in0:=in1:=1;//Set input port to counting function for counter O.

Input terminal variable mapping

" Application.ind [] In0_Configure SoRg BYTE

" Application.inl [] Ini_Configure SRt BYTE
C: Signal filter parameters configuration

filt set:=8;//The unitis 0.25us, which is equivalent to 2us. This value can be adjusted for different interference.

Filter parameter variable mapping
"% Application.filt_set [Filt_Set SLOE28 BYTE

D: Control parameter configuration

-136-

AX series programmable controller software manual Function module command

Set the control word. The following operation is based on bit.
//[Enable counting
Control.0:=1;
//[Frequency multiplication setting 1: quadruple frequency and only quadrature counting is valid, O: rated frequency
Control.1:=0;
Control.2:=0;
/[Clear counting 1: Enable O: Disable

Control.3:=0;

/ICounting direction O: Positive 1: negative
Control.7:=0;

//Counting modes 1: Linear 0: Cycle
Control.8:=0;

/ISelect the timing unit, where 0 indicates 1us, 1 indicates 10us, 2 indicates 100us, 3 indicates 1ms. This parameter
is invalid in non-timing mode.

Control.4:=0;
Control.5:=0;

Control.6:=0;
Preset value control:
1 Software trigger write;

2 External trigger write. Select the external trigger source among X8, X9, XA, XB (i.e. CnT, where n is the count
channel, 0 =< n <= 3. Each trigger source corresponds to a count channel).

3 Comparison consistent trigger write
Latch control of count (timing) value:

4 Enable the count value latching. Select the external trigger source among X8, X9, XA, XB (i.e. CnT, where n is the
count channel, 0 =< n <= 3. Each trigger source corresponds to a count channel).

Control.9:=0;
Control.10:=0;

Control.11:=0;

Set control parameters for counting function blocks

counterparam[0] .Control:= Control;//Control word

counterparam[0] .TaskPeriodNum:=1;//The number of task cycles between the pulse frequency updates
counterparam[0] .UpValue:=10000000;

counterparam|[0] .DownValue:=-1000;

counterparam[0] .Ratio:=10000;

-137-

AX series programmable controller software manual Function module command

Program code example

CounterO (
Enable:= TRUE,
Channel:= 0, //Select counter 0. Select a value from [0,7] for other counter.
CounterParameter:=counterparam[0],
Value=> valueO, //Outputcount
Frequency=> fre0, //Outputcountfrequency value
Velocity=> vel0O, //Output count velocity value
Direction=> ,
Break=> ,
Error=> ,
ErrorID=>);

Time sequence description

(1) Forward

CnA

CnB

(2) Reverse

CnA

CnB

Figure A-8 Quadrature pulse reverse input diagram
Note:

Quadrature counting needs to be cumulative or subtractive depending on the direction of encoder rotation. In forward
rotation (phase A is 90° ahead of phase B), accumulation is performed according to the frequency multiplication mode.
The counter is increased by one for each CnA cycle in rated frequency mode, and increased by one for each signal edge
of CnA and CnB in quadruple frequency mode. In reversed rotation (phase B is 90° ahead of phase B), the counter is
decreased by one for each CnA cycle in rated frequency mode, and decreased by one for each signal edge of CnA and
CnB in quadruple frequency mode. n indicates counting channel, 0 =< n <=7.

A.3.1.3 Timing counting

The input port can be left blank. Configure the counting mode to timing counting, which counts according to the set time
unit. Currently the counter supports a maximum of 8 channels.

Timing counting actually implements the clock function. It can preset the timing start point, time unit, and timing duration
(by setting the comparison value), and output the comparison equal signal when the timing duration is reached. The
parameters can also be reset and re-timed after the timing is complete. Timing counting needs to be cumulative or
subtractive depending on the configured counting direction. In forward running, the counter will increase by one every

-138-

AX series programmable controller software manual

Function module command

other cycle, otherwise it will decrease by one.

Function configuration

A: Counting mode configuration
Counting mode function configuration

/[During the counting mode configuration for counter 0 and 1, set timing counting value to 2, the low 4 bits of the
byte to counter 0, and the high 4 bits to counter 1.

xmodea:=16#22;

/I During the counting mode configuration for counter 2 and 3, set timing counting value to 2, the low 4 bits of the
byte to counter 2, and the high 4 bits to counter 3.

xmodeb := 16#22;

Configure variable mapping for counter mode

"% Application.xmodea [¥Mode_SetA opde BYTE

] Application, xmadeb [¥Mode_SetB %OBiF BYTE

B: Input terminal function configuration, set to counting function (No effect if not configured)
in0:=1inl:=1;//Set input port to counting function for counter O.
Input terminal variable mapping

" Application.in0 [In0_Configure LLORS BYTE

" Application.inl [In1_Configure LoRt BYTE

C: Signal filter parameters configuration (No effect if not configured)

filt set:= 8;/[The unit is 0.25us, which is equivalent to 2us. This value can be adjusted for different
interference.

Filter parameter variable mapping

i] Application. filt_set [Filt_Set SOE28 BYTE

D: Control parameter configuration
Set the control word. The following operation is based on bit.
/[Enable counting
Control.0:=1;

/[Frequency multiplication setting 1: quadruple frequency and only quadrature counting is valid, O: rated
frequency.

Control.1:=0;
Control.2:=0;

/IClear counting 1: Enable O: Disable

-139-

AX series programmable controller software manual Function module command

Control.3:=0;

//Counting direction O: Positive 1: negative

Control.7:=0;

//[Counting modes 1: Linear 0: Cycle
Control.8:=0;

/[Select the timing unit, where 0O indicates 1us, 1 indicates 10us, 2 indicates 100us, 3 indicates 1ms. The counter
counts in this setting unit.

Control.4:=0;
Control.5:=0;
Control.6:=0;
Preset value control:
1 Software trigger write;
2 External trigger write. Select the external trigger source among X8, X9, XA, XB.
3 Comparison consistent trigger write
Latch control of count (timing) value:
4 Enable the count value latching. Select the external trigger source among X8, X9, XA, XB.
Control.9:=0;
Control.10:=0;

Control.11:=0;

Set control parameters for counting function blocks

counterparam[0] .Control:= Control;//Control word

counterparam[0] .TaskPeriodNum:=1;//The number of task cycles between the pulse frequency updates
counterparam[0] .UpValue:=10000000;

counterparam[0] .DownValue:=-1000;

counterparam[0] .Ratio:=10000;

Program code example
CounterO (
Enable:= TRUE,
Channel:= 0, //Select counter 0. Select a value from [0,7] for other counter.
CounterParameter:=counterparam[0],
Value=> valueO, //Outputcount
Frequency=> fre0, //Output countfrequency value

-140-

AX series programmable controller software manual Function module command

Velocity=> vel0, //Output count velocity value
Direction=> ,
Break=> ,
Error=> ,
ErrorID=>);
Time sequence description
Note: All count channels can perform timing counting.

A.3.1.4 Pulse + direction counting

Pulse + direction signal includes CxA and CxB. CxA is connected to pulse signal, and CxB is connected to direction signal.
The high level of the direction signal indicates the forward running, and the low level indicates the reversed running. X is
the number of channels, 0=< x <= 7.

Configure the input port to a counting function, and the counting mode to the pulse + direction counting. All 16 input ports
can be selected for pulse + direction counting. Currently the counter supports a maximum of 8 channels.

Function configuration
A: Counting mode configuration
Counting mode function configuration

//During the counting mode configuration for counter 0 and 1, set pulse + direction value to 3, the low 4 bits of the
byte to counter 0, and the high 4 bits to counter 1.

xmodea:=16#33;

/IDuring the counting mode configuration for counter 2 and 3, set pulse + direction value to 3, the low 4 bits of the
byte to counter 2, and the high 4 bits to counter 3.

xmodeb := 16#33;
Configure variable mapping for counter mode

"% Application.xmodea @ ¥Mode_SetA MOEdE BYTE

T Application. xmodeb @ ¥Mode_SetB MOBF BYTE

B: Input terminal function configuration, set to counting function
in0:=1inl:=1;//Set input port to counting function for counter O.
Input terminal variable mapping

] Application.ind [In0_Configure SLoEe BYTE

] Application.inl [In1_Configure SL0Rt BYTE
C: Signal filter parameters configuration

filt _set:= 8;//The unit is 0.25us, which is equivalent to 2us. This value can be adjusted for different
interference.

Filter parameter variable mapping

i] Application. filt_set [Filt_Set SOE28 BYTE

-141-

AX series programmable controller software manual Function module command

D: Control parameter configuration
Set the control word. The following operation is based on bit.
/[Enable counting
Control.0:=1;

/[Frequency multiplication setting 1. quadruple frequency and only quadrature counting is valid, O: rated
frequency

Control.1:=0;
Control.2:=0;
/IClear counting 1: Enable O: Disable

Control.3:=0;

/ICounting direction 0: Positive 1: negative

Control.7:=0;

//Counting modes 1: Linear 0: Cycle
Control.8:=0;

/I Select the timing unit, where 0 indicates 1us, 1 indicates 10us, 2 indicates 100us, 3 indicates 1ms. This parameter
is invalid in non-timing mode.

Control.4:=0;
Control.5:=0;
Control.6:=0;

Preset value control:

1 Software trigger write;

2 External trigger write. Select the external trigger source among X8, X9, XA, XB (changed to: CnT, where n is the
count channel, 0 =< n <= 3. Each trigger source corresponds to a count channel).

3 Comparison consistent trigger write
Latch control of count (timing) value:

4 Enable the count value latching. Select the external trigger source among X8, X9, XA, XB (changed to: CnT,
where n is the count channel, 0 =< n <= 3. Each trigger source corresponds to a count channel).

Control.9:=0;
Control.10:=0;

Control.11:=0;

Set control parameters for counting function blocks
counterparam[0] .Control:= Control;//Control word
counterparam[0] .TaskPeriodNum:=1;//The number of task cycles between the pulse frequency updates

counterparam[0] .UpValue:=10000000;

-142-

AX series programmable controller software manual Function module command

counterparam[0] .DownValue:=-1000;

counterparam[0] .Ratio:=10000;

Program code example

CounterO (
Enable:= TRUE,
Channel:= 0, //Select counter 0. Select a value from [0,7] for other counter.
CounterParameter:=counterparam[0],
Value=> valueO, //Outputcount
Frequency=> fre0, //Output count frequency value
Velocity=> vel0O, //Outputcount velocity value
Direction=> ,
Break=> ,
Error=> ,
ErrorID=>);

Time sequence description

(1) Forward

o L L L
CnB J

(2) Reverse

CnA
-1 -1 -1
CnB T

Figure A-9 Pulse + direction forward input diagram

Figure A-10 Pulse + direction reverse input diagram
Note:

Pulse + direction counting needs to be cumulative or subtractive depending on the direction signal. In forward running, the
counter will increase by one every time a pulse comes, otherwise it will decrease by one. n indicates counting channel, 0
=<n<=7.

A.3.2 LatchValue_HP

To call the latch value reading module, the Counter_HP module should be called to set the parameters of the counter used.
This module selects the trigger signal by selecting CxT, and latches the corresponding value when there is a signal (rising
edge trigger latch). Only signals X8, X9, XA, XB have a trigger function. It is necessary to set the count value latch control
and other parameters in the counter, indicating that Done will not be set to true when the latch value is 0.

-143-

AX series programmable controller software manual

Function module command

Table A-1 Latch_Value

Parameter Type Input/Output type Function
Enable BOOL IN Enable
Number of
Channel BYTE IN
channels[0,3]
Value DINT ouT Latch value
Execution complete
Done BOOL ouT .
sign
Error BOOL ouT Error sign
ErrorlD BYTE ouT Error code
LatchValue_HP
—Enable Valuef—
—{Channel Donep—
Errorfp—
ErrorlDf—
Figure A-11 Latch_Value
A.3.2.1 Function configuration
A: Configure Counter_HP function block
See Counter_HP function block description for details.
Special configuration for the latch function is described as follows:
1: Configure the input terminal as latching function.
Example: Configure X8 as the latch triggering port.
in8:=2;
i Application.ind i In8_Configure SRS BYTE

2: Configure control parameters for latching enable

Example: Configure to enable latching.
Control.9:=0;
Control.10:=0;

Control.1ll:=1;

B: Interrupt configuration (if required)
See probe interrupt instruction for details.

C: Configure LatchValue_HP function block

The channel setting of the function block LatchValue_HP is the same as the channel value of Counter_HP.

Example: Select counter 0 and store the latch value in latchO.

latchValueO (

Enable:= TRUE,

-144-

AX series programmable controller software manual Function module command

Channel:= 0,
Value=> latchO,
Done=> ,
Error=> ,
ErrorID=>);

A.3.2.2 Time sequence description

Cnt[x] ——— Value (n-1) Value n Value m Value (m+1)

oxT 1] n

‘ /
Lock Lock Function Enabled!

Function _ N
LatchValue[X Enabled Value n S Value m

Figure A-12 Latch function diagram
Note:

x indicates the counting channel, 0 =< x <= 3, Cnt[x] indicates the count value of the xth counting channel, CxT indicates
the latch signal of the xth channel, and LatchValue[x] indicates the latch value of the xth channel. When the trigger signal
of CxT latch arrives (the latch function must be configured correctly), the Cnt[x] count value will be latched to
LatchValue[x]. The upper computer can read the value of LatchValue[x] as needed. LatchValue[x] is a 32-bit signed
number, and the highest bit is the sign bit.

A.3.3 PresetValue HP

There are three ways to write the counter preset values: software write, external trigger write, and count value comparison
equal write. To call this module, the Counter_HP module should be called to set the parameters of the counter used. Only
the four channels of input counter 0, 1, 2, 3 have parameter preset function. Parameters such as preset value control
should be set in the counter. Note: Done indicates that the preset value has been written into the FPGA, and it must be
enabled in the counter according to the set parameters. Done will not be set to true when the preset value is 0.

Table A-2 Preset_Value

Parameter Type Input/Output type Function
Enable BOOL IN Enable
Number of write
Channel BYTE IN
channels|[0,3]
Preset value (start
Value DINT IN
value)
Complete sign, 1:
Done BOOL ouT
Complete
Error BOOL ouT Error sign
ErrorlD BYTE ouT Error code

PresetValue_HP
—Enahle Donep—
—Channel Errorf—
—Walue ErrorlDf—

Figure A-13 Preset_Value

-145-

AX series programmable controller software manual Function module command

A.3.3.1 Function configuration
There are three ways to preset values. Select one of them as needed in actual use.
Software trigger write

In this mode, the function block PresetValue_HP enables the preset value writing. The software writing is done by the
upper computer ARM.

A: Configure Counter_HP function block

See Counter_HP function block description for details. Special configuration for the preset value function is
described as follows:

Configure the control parameter to the preset value for software trigger write.
Control.9:=1;
Control.10:=0;
Control.11:=0;
B: Configure PresetValue_HP function block
The channel setting of the function block PresetValue_HP is the same as the channel value of Counter_HP.
Example: Select counter 0 and set the preset value to 10000.
Set ValueO (
Enable:= bPreSetFlag,
Channel:= 0,
Value:= 10000,
Done=> ,
Error=> ,
ErrorID=>);
External trigger write

In this mode, the function block PresetValue_HP is enabled. The preset value is written when there is an external trigger
signal CxT. The rising edge of CxT is valid.

A: Configure Counter_HP function block
See Counter_HP function block description for details.
Special configuration for the external trigger function is described as follows:
1: Configure the input terminal as latching function.
Example: Configure X8 as the latch triggering port.
in8:=2;
i Application.ind " In8_Configure SRS BYTE
2: Configure the control parameter to the preset value for external trigger write.
Control.9:=0;
Control.10:=1;

Control.11:=0;

-146-

AX series programmable controller software manual Function module command

B: Configure PresetValue_HP function block
The channel setting of the function block PresetValue_HP is the same as the channel value of Counter_HP.
Example: Select counter 0 and set the preset value to 10000. Write the preset value when the port is triggered.
Set ValueO(
Enable:= bPreSetFlag,
Channel:= 0,
Value:= 10000,
Done=> ,
Error=> ,
ErrorID=>);
Comparison consistent trigger write

In this mode, the function block PresetValue_HP is enabled. The preset value is written when the function block
CompareSingleValue_HP comparison is consistent.

A: Configure Counter_HP function block

See Counter_HP function block description for details. Special configuration for the comparison consistent trigger
function is described as follows:

Configure the control parameter to the preset value for comparison consistent trigger write.
Control.9:=1;
Control.10:=1;
Control.11:=0;
B: Configure CompareSingleValue_HP function block
See CompareSingleValue_HP function block description for details.
C: Configure PresetValue_HP function block
The channel setting of the function block PresetValue_HP is the same as the channel value of Counter_HP.

Example: Select counter 0 and set the preset value to 10000. Write the preset value when the
CompareSingleValue_HP comparison is consistent.

Set ValueO (

Enable:= bPreSetFlag,
Channel:= 0,

Value:= 10000,

Done=> ,

Error=> ,

ErrorID=>);

A.3.3.2 Time sequence description

(1) Software trigger

-147-

AX series programmable controller software manual Function module command

presetValue[x]
_ Value (n-1) Value n Value m Value (mt1)
Wr_n / L Preset /u
Preset | Function |
Function\ Enabled |
Enabled ™ .
Cnt[x] Value n ke Value m

Figure A-14 Software trigger preset function diagram
Note:

X indicates the counting channel, 0 =< x <= 3. presetValue[x] indicates the preset value of the xth counting channel. Wr_n
indicates the write signal of the upper computer and the low level is valid. Cnt[x] indicates the count value of the xth
channel counter. When the Wr_n low level arrives, the value of presetValue[x] is preset into Cnt[x].

(2) External trigger

presetValue[x]
_ Value (n-1) Value n Value m Value (m+1)
i n
Preset ‘\ “"Preset Function Enal)\ed‘:
Function® <
Cnt[x] Enabled Value n ‘ “ Value m

Figure A-15 External trigger preset function diagram
Note:

X indicates counting channel, 0 =< x <= 3. presetValue[x] indicates the preset value of the xth counting channle, which is
the Value issued by the CompareSingleValue_HP module. CxT indicates the external preset trigger signal of the xth
channle and the rising edge is valid. Cnt[x] indicates the counter value of the xth channel. When the CXT rising edge
arrives, the value of presetValue[x] is preset into Cnt[x].

(3) Counts equal trigger

presetValue[x]
—_— Value (n-1) Value n Value m Value (m+1)
cvEQPV[X] /T ﬂ
Preset ‘\ “Preset Function Enabled |
Function _ ;\
Cnt[x] Enabled Value n R Value m

Figure A-16 Single-value comparison consistent trigger preset function diagram
Note:

x indicates the counting channel, 0 =< x <= 3. presetValue[x] indicates the preset value of the xth counting channel.
cvEQPV[x] indicates the single-value comparison consistent signal of the xth channel and the high level is valid. Cnt[x]
indicates the count value of the xth channel counter. When the cvEqPV[x] high level arrives, the value of presetValue[x] is
preset into Cnt[x]. presetValue[X] is a 32-bit signed number, and the highest bit is the sign bit.

A.3.4 PulsewidthMeasure HP

This module uses pulse width measurement signal PWCx, and only the input signals X8, X9, XA, XB are valid for the
corresponding functions. The number of channels adopts the low 4-bit enabling channel, with bit 0 indicating channel 1, bit
1 indicating channel 2, bit 2 indicating channel 3 and bit 3 indicating channel 4. Example: Channel: = 2#00001010
indicates that channels 2 and 4 are enabled.

-148-

AX series programmable controller software manual Function module command

Table A-3 Pulsewidth_Measure

Parameter Type Input/Output type Function
Enable BOOL IN Enable
Channel number (4 low
Channel BYTE IN)]
bits valid)
Pulse width
measurement mode 1
Mode BYTE IN . .
indicates high level and
0 indicates low level
Channel 0 pulse width
ValueO DINT ouT measurement value
(0.01us)
Channel 1 pulse width
Valuel DINT ouT measurement value
(0.01us)
Channel 2 pulse width
Value2 DINT ouT measurement value
(0.01us)
Channel 3 pulse width
Value3 DINT ouT measurement value
(0.01us)
Error BOOL ouT Error sign
ErroriD BYTE ouT Error code
PulsewidthMeasure_HP
—Enahle Valueld —
— Channel Valuel—
—Mode ValueZ —
Valued —
Errorp—
ErrorIDp—

Figure A-17 Pulsewidth_Measure
A.3.4.1 Function configuration

This function block can call the function block PulsewidthMeasure_HP for pulse width measurement as long as the input
port is configured to pulse width measurement PWC.

Example 1: Perform pulse width measurement on X9. chl_Value is the high level pulse width measurement value.
Input port configuration
in9:=4;
i Application.in i In9_Configure OB BYTE

Function block program

PWMO (
Enable:= TRUE,
Channel:= 2#00000010,

Mode:= 2#00000010, //High level measurement is enabled.

-149-

AX series programmable controller software manual

Function module command

ValueO=> ,
Valuel=> chl Value,
Valuez2=>,
Value3=>,
Error=> ,

ErrorID=>);

Example 2: Perform pulse width measurement on X8, X9, XA, XB. chO_Value, chl_Value, ch2_Value, ch3_Value are the
high level pulse width measurement value for 4 ports respectively.

Input port configuration
in8:= in9%:=4;
inA:= inB:=4;
"$ Application.ing
& Application.ing
"# Application.inA
"# Application.inB
Function block program

PWMO (

Enable:= TRUE,

Channel:= 2#00001111, //4 channels

Mode:= 2#00001111, //The lower 4 bits represent 4 channels.

Value(O=>ch0 Value ,
Valuel=> chl Value,
Value2=> ch2 Vvalue,
Value3=>ch3 Value ,
Error=> ,
ErrorID=>);

A.3.4.2 Time sequence description

(1) Positive pulse width detection

@ @ @ @

Ind_Configure
In9_Canfigure
InA_Configure
InB_Configure

BYTE
BYTE
BYTE
BYTE

« Uy repeL

PWC_mode[x]

PWC_en[x]

PWCI[x]

Cnt[x] — 0 1 2 3

n-1

pulseWidth[x]

-150-

AX series programmable controller software manual Function module command

(2) Negative pulse width detection

PWC_mode[x]

PWC_en[x]

PWCIx]

Cnt[x] — 0 1 2 3 n1 n 0 —

pulseWidth[x]

Description of positive and negative pulse width detection:

x indicates to the counting channel, 0=< x <= 3. PWC_mode[x] indicates the detection mode of the xth channel. High level
indicates positive pulse detection, and low level indicates negative pulse. PWC_en[x] indicates the enabling of the xth
channel with hight level valid. PWC][x] indicates the xth channel pulse input signal. Cnt[x] indicates the xth channel pulse
width detection counter. PulseWidth[x] indicates the xth channel pulse width in 0.01us without a sign.

A.3.5 SetComparelnterruptParam_HP

This function block is used to set the comparison interrupt source.

Table A-4 SetComparelnterruptParam

Parameter Type Input/Output type Function
Enable BOOL IN Enable
. Multi-value comparison
MoreOrSingle_Sel BYTE IN)]
interrupt selection
Multi-value comparison
MoreValueCount_Sel BOOL IN)]
- interrupt selection
Error BOOL ouT Error sign
ErrorlD BYTE ouT Error code

SetComparelnterruptParam_HP
—Enable Errorp—
—Mare0rSingle_Sel ErrorlDp—
—{MoreValueCount_Sel

Figure A-18 SetComparelnterruptParam
MoreOrSingle_Sel parameter description:

The counter interrupt status output is selected to control one interrupt channel per bit. There are 8 comparison interrupts
in total. The comparison interrupt corresponding to each MoreOrSingle_Sel bit value is described below.

-151-

AX series programmable controller software manual

Function module command

. Corresponding . .
Bit Bit Value 1 Bit Value 0
Interrupt
Interruption of the Oth
Comparison interrupt | comparison point of the | Counter 0 single-value
0 0 multi-value comparison | comparison interrupt
counter
Interruption of the first
1 Comparison interrupt | comparison point of the | Counter 1 single-value
1 multi-value comparison | comparison interrupt
counter
Interruption of the
9 Comparison interrupt | second comparison | Counter 2 single-value
2 point of the multi-value | comparison interrupt
comparison counter
Interruption of the third
3 Comparison interrupt | comparison point of the | Counter 3 single-value
3 multi-value comparison | comparison interrupt
counter
Interruption of the fourth
4 Comparison interrupt | comparison point of the | Counter 4 single-value
4 multi-value comparison | comparison interrupt
counter
Interruption of the fifth
5 Comparison interrupt | comparison point of the | Counter 5 single-value
5 multi-value comparison | comparison interrupt
counter
Interruption of the sixth
5 Comparison interrupt | comparison point of the | Counter 6 single-value
6 multi-value comparison | comparison interrupt
counter
Interruption of the
. Comparison interrupt | seventh comparison | Counter 7 single-value
7 point of the multi-value | comparison interrupt
comparison counter

MoreValueCount_Sel parameter description:

Select a counting channel for multi-value comparison interrupt. The MoreValueCount_Sel value is described as follows:

MoreValueCount_Sel Value Selected counting channel
0 Counter 0
1 Counter 1
2 Counter 2
3 Counter 3

A.3.5.1 Function configuration

To use this function block, call the CompareMoreValue_HP block. See the CompareMoreValue_HP description for details.

Example: Select counter 3 for a multi-value comparison interrupt and generate interrupts at comparison interrupt 0 and

comparison interrupt 1.

-152-

AX series programmable controller software manual

Function module command

interrupt sel:=16#11;//Select multi-value comparison interrupt.
count_sel:=16#3;//Select multi-value comparison interrupt counter.
SetCompareInterruptParam (

Enable:= enableparam,

MoreOrSingle Sel:= interrupt sel,

MoreValueCount Sel:= count sel,

Error=> ,

ErrorID=>);

A.3.6 TimingSampling_HP

Timing sampling is the calculation of the number of pulses acquired in a given time range, which can be a variety of pulse
signals supported by the input channel, including single pulse, CW/CCW, timing, and pulse+direction. To call this module,
the Counter_HP module should be called to set the parameters of the counter used. Please set Enable to false before

modifying the sampling time, otherwise the sampling may be abnormal.

Table A-5 Timing_Sampling

Parameter Type Input/Output type Function
Enable BOOL IN Enable
Number of
Channel BYTE IN
channels[0,7]
SampleEnable BOOL IN Enable sampling
Timeset DWORD IN Set sampling time (us)
Value DINT ouT Sample value
Complete sign 1:
Done BOOL ouT
Complete
Error BOOL ouT Error sign
ErrorlD BYTE ouT Error code

TimingSampling_HP

—Enable Value
—Channel Done
— 5ampleEnahle Error

—Timeset ErrarID

Figure A-19 Timing_Sampling
A.3.6.1 Function configuration

A: Configure Counter_HP function block

See Counter_HP function block description for details. There is no need to set special parameters to use the timed

sampling function block.

B: Configure TimingSampling_HP function block

The channel setting of the function block TimingSampling_HP is the same as the channel value of Counter_HP.

Example: Select counter 1, set the sampling time to 20000us, and output the sampling pulse value to

sampleValuel.

-153-

AX series programmable controller software manual

Function module command

Samplingl (

Enable:= TRUE,
Channel:= 1,
SampleEnable:=TRUE,
Timeset:= 20000, //us
Value=> sampleValuel,
Done=> ,

Error=> ,

ErrorID=>);

A.3.6.2 Time sequence description

Pulse[x]

SAMP_en[x]

Cnt[lx] ——

sample[x]

¢————————— SAMPTime[x]

\d

alaininininaninininanininining

n-1

0‘1‘2‘0}—

Note:

Figure A-20 Sampling diagram

x indicates the xth counting channel, 0 =< x <= 3. Pulse[x] indicates the input pulse signal of the xth channel, which can be
a variety of pulse signals supported by the input channel, including single pulse, CW/CCW, timing, and pulse+direction.
SAMP_en[x] indicates the enabling of the xth channel with hight level valid. SAMPTime[x] indicates the sampling time of
the xth channel. Sample[x] indicates the number of pulses sampled on the xth channel, which is an unsigned number.

A.3.7 CompareSingleValue_HP

To call the single-value comparison output module, the Counter_HP module should be called to set the parameters of the

counter used. Enable the rising edge to update parameter. The low level module is invalid. The value of OutChanne

ranges from O to 7.

Table A-6 compare_singlevalue

Parameter Type Input/Output type Function
Enable BOOL IN Enable
Start_Cmp BOOL IN Start comparison
Channel BYTE IN Counting channel [0,7]
Select output Channel
OutChannel DINT IN
[0.7]
CmpValue DINT IN Set comparison value
Error BOOL ouT Error sign
ErrorlD BYTE ouT Error code

-154-

AX series programmable controller software manual Function module command

ComparesingleValue_HP
—Enahle Errorfp—
—Start_Cmp ErrorIDF—
—Channel
—QutChannel
—{CmpWalue

Figure A-21 compare_singlevalue
A.3.7.1 Function configuration
A: Configure Counter_HP function block

See Counter_HP function block description for details. No special configuration is required for the single-value
comparison function block.

B: Interrupt configuration
See Comparison interrupt instruction fro details.
C: Configure CompareSingleValue_HP function block

The channel setting of the function block CompareSingleValue_HP is the same as the channel value of
Counter_HP.

Example: Select counter 3 and set the comparison value to 10000 and output channel to 0.
Cmp3 (
Enable:= TRUE,
Start Cmp:= bStart,
Channel:= 3, //Counter
OutChannel:= 0, //Outputchannel
CmpValue:= 10000, //Comparison value
Error=> ,
ErrorID=>);

A.3.7.2 Time sequence description

Pulse[x]

pvIX] i

Cnt[x] — m1 m m+l | m+2 | m+3 n-1 n n+l | n+2 | n+3 .

CMP_single_en[x]

Cnt[x]CvEqgPVv

Figure A-22 Single-value comparison interrupt timing
Single-value comparison description:

X means counting channel, 0 =< x <= 7. Pulse[x] indicates the input pulse of the xth channel, which can be a variety of

-155-

AX series programmable controller software manual Function module command

pulse signals supported by the input channel, including single pulse, CW/CCW, timing, and pulse+direction. Pv[x]
indicates the comparison value of the xth channel. Cnt[x] indicates the xth channel counter value. CMP_single_en[x]
indicates the enabling of the xth channel single-value comparison. Cnt[x]CVEQPv indicates a single-value comparison
output for channel x. A high level is valid, which indicates that the count value is equal to pv.

The above example illustrates the counting accumulation, which is quite similar to the counting degression. If the count
value is equal to the pv value, the output Cnt[x]CVEQPV is valid.

A.3.8 CompareMoreValue HP

To call the multi-value comparison output module, the Counter_HP module should be called to set the parameters of the
counter used. The comparison value must be increased or decreased in order, and the corresponding counter is set in
positive or negative direction. The maximum number of comparisons is 8. Enable the rising edge update parameter and
invalidate the low level module.

Table A-7 compare_morevalue

Parameter Type Input/Output type Function
Enable BOOL IN Enable

Start_Cmp BOOL IN Start comparison
Channel BYTE IN Counting channel [0,7]

Number of comparison
values [1,100]
CmpValue POINTER TO DINT IN Set comparison value

Number of equal

CmpValue_Num BYTE IN

CmpEqual_Num BYTE ouT .
comparisons [1,100]
Error BOOL ouT Error sign
ErrorlD BYTE ouT Error code
CompareMoreValue_HP
—Enable CmpEqual_Numf—
—Start_Cmp Errorfp—
—Channel ErrorlDf—
—CmpValue_Num
—CmpValue

Figure A-23 compare_morevalue
A.3.8.1 Function configuration
A: Configure Counter_HP function block

See Counter_HP function block description for details. No special configuration is required for the multi-value
comparison function block.

B: Interrupt configuration (if required)

See Comparison interrupt instruction fro details.
C: Configure SetComparelnterruptParam_HP (if required)

See SetComparelnterruptParam_HP function block description for details.
C: Configure CompareSingleValue_HP function block

The channel setting of the function block CompareMoreValue_HP is the same as the channel value of
Counter_HP.

Example: Select counter 0 and set a comparison value from 1000 to 8000. Up to 8 comparison values can be
added in total. Set the comparison interrupt output channel to 0 and 1.

-156-

AX series programmable controller software manual Function module command

FOR comp num:=0 TO 7 BY 1 DO
cmpvalue[comp num] :=1000+1000*comp num;

END_FOR

interrupt sel:=16#3;

count sel:=16#0;
SetCompareInterruptParam (
Enable:= enableparam,
MoreOrSingle Sel:= interrupt sel,
MoreValueCount Sel:= count sel,
Error=> ,

ErrorID=>);

compValue num:=8;

pcmpvalue:=ADR (cmpvalue [0]) ;//Obtain the address of the comparison value array.

cmpmore0 (
Enable:= benabele,
Start Cmp:= bcmpmore,
Channel:= 0,
CmpValue Num:=compValue num , //Total number of comparison values
CmpValue:= pcmpvalue, //Pointer tothe comparison value store address input
CmpEqual Num=> CmpEqual NumO, //Sequence numbers of the equal comparison values
Error=> ,

ErrorID=>);

A.3.8.2 Time sequence description

Pulse[x]

PVIXY] .

Cnt[x] — 1 m1 m | m+l | m+2 | m+3 n-1 n n+l | n+2 | n+3 -

CMP_more_en[x]

Cnt[x]CVvEQPV[y]

Figure A-24 Multi-value comparison interrupt timing

-157-

AX series programmable controller software manual Function module command

Multi-value comparison description:

X means counting channel, 0 =< x <= 3. y indicates the yth comparison output value of the selected counting channel, 0 =<
y <= 7. Pulse[x] indicates the input pulase of the selected xth channel, which can be a variety of pulse signals supported
by the input channel, including single pulse, CW/CCW, timing, and pulse+direction. Pv[x][y] indicates the yth comparison
value of the xth channel. Cnt[x] indicates the xth channel counter value. CMP_more_en indicates the enabling of the
multi-value comparison. Cnt[x]CvEQgPvV[y] indicates the yth comparison output value for channel x. A high level is valid,
which indicates that the count value is equal to pv.

The above example shows the counting accumulation, which is quite similar to the counting degression. If the count value
is equal to the pv value, the output Cnt[x]CvEqPV[y] is valid.

A.3.9 GetVersion_HP

Table A-8 get_version

Parameter Type Input/Output type Function
Enable BOOL IN Enable
Version STRING ouT Version

GetVersion_HP
—Enable Versionf—

Figure A-25 get_version
A.3.10 Zphase_Clearpulse_HP

The counting channel Z signal clearing function clears the counter value when the high-speed counter detects the Z signal
of the counting channel. In actual use, the input signal needs to be configured as the Z signal function, and the input ports
X4, X5, X6, and X7 supports the Z signal function. Enable enables the rising edge to update axis. The low level module is
invalid.

If clearing and compensation are active at the same time, the clearing function take precedence as its priority is higher.

Table A-9 Zphase_Clearpulse

Parameter Type Input/Output type Function
Enable BOOL IN Enable
) Enable Z phase clear pulse
bEnableAxisO BOOL IN
for channel 0
) Enable Z phase clear pulse
bEnableAxisl BOOL IN
for channel 1
) Enable Z phase clear pulse
bEnableAxis2 BOOL IN
for channel 2
] Enable Z phase clear pulse
bEnableAxis3 BOOL IN
for channel 3
Error BOOL ouT Error sign
ErrorlD BYTE ouT Error code
Zphase_Clearpulse_HP
—Enable Errorf—
— bEnablefsxiz0 ErrorlDf—
—bEnablefxis1
—{bEnablefxis2
— bEnablefxis3

Figure A-26 Zphase_Clearpulse

-158-

AX series programmable controller software manual

Function module command

A.3.10.1 Function configuration

A: Configure Counter_HP function block

See Counter_HP function block description for details.

There is special configuration for the counting channel Z signal clearing function.

1: Configure the input terminal as Z signal function.

Example: Configure X4 as Z signal function.

ind:=2;

"$ Application.in4

T

In4_Configure

B: Configure Zphase_Clearpulse_HP function block

26084

BYTE

Example: Use counter channel 0 and counter channel 1 with Z-phase clearing function.

Zphase Clearpulse FB(

Enable:= TRUE,

bEnableAxisO:= TRUE ,
bEnableAxisl:= TRUE ,
bEnableAxis2:=

bEnableAxis3: ,

Error=>

’

ErrorID=>);

A.3.10.2 Time sequence description

CnA

CnB

CnZz

Z_clean_enable[n]

Cntln] —— m1| o 1

Note:

n-1 n

Figure A-27 Clearing function timing diagram

n indicates the nth channel, 0 =< n <= 3. Z_clean_enable[n] indicates the Z clearing function enabling of the nth channel

with high level valid. Cnt[n] indicates the nth channel counter value. The above example illustrates the forward counting

mode, which is quite similar to the reversed counting mode. The reversed counting is started after the Z signal clearing.

A.3.11 Zphase_Compensate HP

The counting channel Z signal compensation function compensates the counter value according to the counter resolution

parameter Ratio when the high-speed counter detects the Z signal of the counting channel. In actual use, the input signal

needs to be configured as the Z signal function, and the input ports X4, X5, X6, and X7 supports the Z signal function.

-159-

AX series programmable controller software manual Function module command

Enable enables the rising edge to update axis. The low level module is invalid. If clearing and compensation are active at
the same time, the clearing function take precedence as its priority is higher. After power-on, the compensation function
requires at least one count value change to take effect. Otherwise the compensation will not work.

Table A-10 Zphase_Clearpulse

Parameter Type Input/Output type Function
Enable BOOL IN Enable
) Enable Z phase pulse
bEnableAxisO BOOL IN]
compensation for channel 0
. Enable Z phase pulse
bEnableAxis1 BOOL IN]
compensation for channel 1
) Enable Z phase pulse
bEnableAxis2 BOOL IN]
compensation for channel 2
) Enable Z phase pulse
bEnableAxis3 BOOL IN]
compensation for channel 3
Error BOOL ouT Error sign
ErrorlD BYTE ouT Error code
Zphase_Compensate_HP
—Enable Errorf—
—bEnablefsxis0 ErrorlDf—
—{bEnablefxis1
—bEnablefxis2
—bEnablefsxiz3

Figure A-28 Zphase_Compensate
A.3.11.1 Function configuration
A: Configure Counter_HP function block
See Counter_HP function block description for details.
There is special configuration for the counting channel Z signhal compensation function.
1: Configure the input terminal as Z signal function.

Example: Configure X4 as Z signal function.
ind:=2;
i Application.in4 i In4_Configure] BYTE

B: Configure Zphase_Compensate_HP function block
Example: Use counter channel 0 and counter channel 1 with Z-phase compensation function.

Zphase Compensate FB(
Enable:= TRUE,
bEnableAxis0:= TRUE,
bEnableAxisl:=TRUE ,
bEnableAxis2:= ,
bEnableAxis3:= ,
Error=> ,
ErrorID=>);

-160-

AX series programmable controller software manual Function module command

A.3.11.2 Time sequence description

A A i j A
CnA Y Y v - Y
i i ((i
CnB
v v v v v v

CnZz

Z_comp_enable[
nj

m+rati | m+rati | m+rati | m+rati
Cntln] —— m1 m m+l | m+2 | m+3 n-1 n on | ont1 | on+2 | on+3

Figure A-29 Compensation function timing diagram

Note:

n indicates the nth channel, 0 =< n <= 3. Z_comp_enable[n] indicates the Z compensation function enabling of the nth
channel with high level valid. Cnt[n] indicates the nth channel counter value. The above example illustrates the forward
counting compensation, which is quite similar to the reversed counting compensation. After the Z signal arrives, the
system executes the reverse compensation (minus ration) and then the reversed counting.

-161-

AX series programmable controller software manual Project Instance

Appendix B Project Instance

B.1 Controller and Goodrive20 Series VFD Configuration Example

The AX Series controller is now set up as the master and a Goodrive 20 Series VFD is set up as the slave. The controller
uses the Modbus/RTU communication protocol with a two-wire RS485 physical layer and communicates with the VFD via
the COM2 port. Let’s write a small program that reads and writes the functional parameters of the Goodrive20 VFD with
the upper computer.

1. Select File > New Project from the menu to create a new standard project. Set the device to INVT AX7X, and select
Structured Text (ST) as the programming language. Edit the project information as needed, as shown in the
following figure.

-] New Project X

Categories Templates

{_J Libraries . . % ,
{1 Projects .S i '"E =
Empty project HMI project Standard Standard
project project w...

[A project containing one device, one application, and an empty implementation for PLC_PRG

Name ‘Goodnvezol
Location b:\InvtmancStudlo\PmJect '
o[oo
Standard Project X

You are about to create a new standard project. This wizard will create the following
| I objects within this project:
'E

- One programmable device as specified below

- A program PLC_PRG in the language specified below

- A cyclic task which calls PLC_PRG

- A reference to the newest version of the Standard library currently installed.

Device INVT AX7X (Shenzhen INVT Electric Co., Ltd.) v

PLC_PRG in | Structured Text (ST) s

-162-

AX series programmable controller software manual Project Instance

Project Information X

Fle Summary pProperties Statistics Licensing Signing

Company vt |
Title |RTU mode Goodrive20 Communication]
Version |1,o,o,o ‘ [] Released
Library Categories ’ ‘ [

Default namespace |]

Author (222 |
Description RTU mode Goodrive20 Communication
Library compatibility _Irwmticsttﬁo\?l.ﬂ.z v

The fields in bold letters are used to identify alibrary.

[[] Automatically generate 'Library Information' POUs
[[] Automatically generate Project Information’ POUs

o][cane

2. Select Tool > Library Repository from the menu, and install the library
CmpModbusRTU_Master2_1.0.0.3.library, as shown in the following figure.

i) Library Repository X

Location System ~ Edit Locations...
(C:\ProgramData\Invtmatic Studio\Managed Libraries)

Installed libraries: Install...
Company |INvT ~ Uninstal
= 3 (Miscellaneous) A R

+ (M cmpHsio_c wr

+. (M cmpHsIo_M T

+ [cmpModbusRTU Mastert 77T

= (@ cmpModbusRTU_ Master2 W7

I 003

+ [cmpModbusTCP Master 77T Find...

*- (I cmpModbusTCP Save 7WT E—

+ ’CmpModbus_RTU_Savel mr

) b DT Sy RAA v Trust Certificate
[~] Group by category Dependendes...
Library Profiles... Close

file

3. Select Library Manager > Add Library to add the installed library to the application, as shown in the following

figure.

-163-

AX series programmable controller software manual Project Instance

i) Library Manager x| [Z] PLC_PRG
[E3 Add Library X Delete Library % Properties 79 Details ' 5] Placeholders [fiff Library Repository @ Icon legend...

Name Namespace Effective version

-] 3s0

35_LICENSE 3.5.14.0

5.5.0

BPLog

TU_Master2, 1.0.0.3 (W) | | cmpModbusRTU_Master2 1.0.0.3
ndard, 3.5.15.

IoStandard =

Cmy

[T

ToStandard 3.5.15.0

a TRAFO 4,5.1.0
Standard = Standard, 3.5.15.0 (System) Standard 3.5.15.0

mEEEEEE

=3 OmpModbusRTU Master2, 1.0.0.3 (INVT) -
ModbusRTU_Master_Fun_COM2
[E] ModbusrTU_Master_init_com2

4. Double-click the PLC_PRG and enter the following codes on the statement editor:
PROGRAM PLC_ PRG
VAR
ModbusRTU Master Fun COM2: ModbusRTU Master Fun COMZ2;
ModbusRTU Master Init COM2: ModbusRTU Master Init COM2;
DatePtr2:ARRAY[0..0]OF INT;
input registers Ptr2:ARRAY[0..9]OF INT;
CoilDataPtr2:ARRAY[0..9]0F BOOL;
input bits Ptr2:ARRAY[0..9]OF BOOL;
CoilSingleData2:INT;
Fun Code2:INT;
Addr2:UINT;
DataCount?2 : UINT: =1;
END VAR
Enter the following code in the main code editor:
ModbusRTU Master Init COM2 (
Execute2:= 1,
Baud2:= 19200,
Databits2:= 8,
Stopbits2:=1 ,

Parity2:=2 ,

Timeout2:= 1000,
bDone2=> ,

Error2=> ,

-164-

AX series programmable controller software manual Project Instance

ErrorID2=>);
ModbusRTU Master Fun COMZ (

xExecute2:= 1,

Fun Code2:= Fun Code2,

Addr2:= Addr2,

Slavez:= 1,

DataCount2:= DataCount2,

CoilDataPtr2:=ADR(CoilDataPtr2) ,

CoilSingleData2:= CoilSingleDataZz2,

input bits Ptr2:= ADR(input bits Ptr2),

input registers Ptr2:=ADR(input registers Ptr2) ,

DataPtr2:=ADR (DatePtr2),

Done2=> ,

Error2=> ,

ErrorID2=>);

Here are some descriptions of the program. The program calls two function blocks of the CmpModbusRTU_Master2
library, ModbusRTU_Master_Init_ COM2 and ModbusRTU_Master_Fun_COM2. ModbusRTU_Master_Init_ COM2 is used
to initialize the RTU Master2, where the baud rate is set to 19200, the data bit is 8, the stop bit is 1, the check bit is even
check, and the timeout time is 1000ms. ModbusRTU_Master_Fun_COM2 is the enablement and specific application of
the function module. The variable Fun_Code2 is the standard Modbus function code, Addr2 is the address of the VFD
Goodrive20 function. For the address of other MODBUS functions, refer to the INVT Goodrive20 Series VFD product
manual. Slave2 indicates the VFD slave address, which is set to 1 here.

Connect the VFD and the controller with the two-wire RS485, and then start the VFD. Set the function code P00.01 to 2
through the VFD keypad, so that the running command can be controlled by the upper computer through communication
modes. Set P00.06 to 8 to select the MODBUS communication mode. Set the serial communication parameters of group
P14 to make it consistent with the initial parameter settings of the upper computer, including baud rate, data bit, parity bit,
slave address, timeout time.

Click the button on the toolbar to compile the code. After compiling, click the "E button on the toolbar to log in
to the controller. Check that the controller digital tube has no error, the VFD Goodrive20 is connected to the controller
smoothly, and the communication is normal. The upper computer interface is shown in the figure.

-165-

AX series programmable controller software manual

Project Instance

) .ﬂ Library Manager IEJ PLC_PRG X LTj Device

Device Application.PLC_PRG

Expression Type Value Prepared value Address Comment E
+ & ModbusRTU_Master_Fun_COM2 ModbusRTU_Master_Fun_COM2 D
& ModbusRTU_Master_Init_COM2 ModbusRTU_Master_Init_COM2
* @ DatePtr2 ARRAY [0..0] OF INT
+ & input_registers_Ptr2 ARRAY [0..9] OF INT
@ CoilDataPtr2 ARRAY [0..5] OF BOOL
+ @ input_bits_Ptr2 ARRAY [0..9] OF BOOL
CoilSingleData2 INT 0
& Fun_Code2 INT 0
@ Addr2 UINT 0
& DataCount2 UINT 1
< >
- B
=] 1 ModbusRTU_Master_Init_COM2(
z Exscute2lGEIEN:= 1,
3 Baud2[ea0 ;= 19200,
4 Databits2[8 J:= 2,
5 Stopbits2[1] '
© r
7 Timeout2[w000 ;= 1000,
8 bDone2=> ,
5 Error2=> ,
10 ErrorID2=>):
8 11 ModbusRTU_Master_Fun_ COM2 (
12 xExecutc2fENE:= 1,
13 Fun_Code2[@ |:= Fun_Code2[0],
14 Addr2[[@ |:= Addr2[[0],
15 Slave2[1 J:= 1,
1€ DataCount2[1 |:= DataCount2[1 |,
17 CoilDataPt rafi000020ES7E00RE+ADR (CoilDataPtr2) ,
18 CoilSingleData2[0 |:= CoilSingleData2_ 0 |,
13 input_bits_Pt 0000205760008 ADR (input_bits_Ptr2),
B 20 input_registers_Prra 2ADR (input_registers_Ptr2) ,
21 DataPt raf0000020E57E009€2ADR (DatePrr2) ,
22 Done2=> ,
Error2=> ,
ErrorID2=>);
[RETURN

Now we take an example of the read operation. Write the value to the variable in the login state. Write 3 to the Fun_Code,
which means 03H function code Read Holding Registers. Write 16#3002 to the Addr, which means that one address is
read from 3002H. The value 3335 can be read from the array DataPtr2 (i.e. 3002H address), which means the bus voltage
is 333.5V with reference to the VFD product manual. Similarly, write 3 to the Fun_Code, which means 03H function code
Read Holding Registers. Writet 16#2100 to the Addr. The value 3 can be read from the array DataPtr2 (i.e. 2100H
address), which means the VFD is down with reference to the VFD product manual.

.+@

Mo d'E‘E sRTU_Master_Fun CO...

ModbusRTU_Master... B8
+ @ ModbusRTU_Master_Init CO ModbusRTU_Master... =
= @ DatePtr2 ARRAY [0..0] OF INT
@ DatePtr2[0] INT 3335
+ @ input_registers_Ptr2 ARRAY [0..9] OF INT
+ @ CoilDataPtr2 ARRAY [0..9] OF BO...
+ @ input_bits_Ptr2 ARRAY [0..9] OF BO...
e i m - - —
9 ErroriZ=» , o
10 ErrorlDz=> j:
= 11 ModbusRTU_Master Fun COM2({
1z xExecute2[IEIEN:= 1,
13 Fun_Code2[3 = Fun Code2[3], I
14 Rddr2[72250 | L
15 i
15 DataCount2[1 |:= DataCount2[1 |,
17 CoilDataPtr2[16#860AE5A8 |:=ADR (CoilDataPtr2) ,
18 CoilSingleData2[0 |:= CoilSingleData?l 0]
13 input_bits_Ptr2[162B50AESE? = ADR(input_bits_Ptr2), ’—I@
L 3 3 T AT £S5 3 T iy 100 % i

-166-

AX series programmable controller software manual

Project Instance

+ % ModbusRTU_Master_Fun_CO... ModbusRTU_Master...

+ @ ModbusRTU_Master_Init_CO ModbusRTU_Master. ..

= & DatePtr2 ARRAY [0..0] OF INT

@ DatePtr2[0] INT 3
input_registers_Pti2 ARRAY [0..9] OF INT
CoilDataPtr2 ARRAY [0..9] OF BO...
input_bits_Ptr2 ARRAY [0..9] OF BO...

T
oW B W

|

m

9 Errori=» ,
10 ErrorID2=>);
= 11 ModbusRTU Master Fun COM2(
1z xExecuce [IENEN:= 1,
13 Fun_Code2[2 |:= Fun Codel[2 |,
14 Rddr2[84 |:=Addr2[843 |,
15 Slave2[1 J:= 1,
16 DataCount2[1 |:= DataCount2[1 |,
17 CoilDataPtr2[16#860AESAE |: =ADR (CoilDataPtr2) ,
18 CoilSingleData2[0 |:= CoilSingleData2[_ 0 |,
] input_bits_Ptr2[J6SBE0AESEZ |:=

PR Y

ADR (input_bits_Ptr2),

P AT L4 mamaas_mmerd s mona T

m

100 % | ~

Now we take an example of the write operation. Write the value to the variable in the login state. Write 6 to the Fun_Code,
which means 06H function code Write Single Register. Write 16#0003 to the Addr, which means to write a value to the
address 0003H. Referring to the VFD product manual, 0003H is the address of the maximum output frequency of the VFD
with a default value of 50.00 HZ. Before writing the value of the address, the value of the address 0003H in the upper
computer is 5000 which is obtained by 50.00Hz multiplied by the scale value of 100. If the maximum output frequency of
the VFD is set to 100Hz, write the 0003H with value 100Hz*100, that is, 10000. After that, the value of P00.03 will change

from 50.00 to 100.00, indicating that the controller wrote successfully to the VFD. See the figure.

+ @ ModbusRTU_Master_Fun_CO... ModbusRTU_Master...
+ #§ ModbusRTU_Master_Init CO... ModbusRTU_Master...
= @ DatePtr2 ARRAY [0..0] OF INT
@ DatePtra[0] INT 5000
input_registers_Ptr2 ARRAY [0..9] OF INT

input_hits_Ptr2 ARRAY [0..9] OF BO...

L4
+ @ CoilDataPtr2 ARRAY [0..9] OF BO...
L4

[

m

9 Error2=r ,
10 ErrorID2=>);
= 11 ModbusRTU Master Fun COM2(
12 xExecute2|if 1,
13 Fun_Code2[& |:= Fun Code2[& |,
14 Rddr2[3 |=Rddr2[3 |,
15 Slavez[1 = 1,
16 DataCount2[_ 1 |:= DataCount2[1],
17 CoilDataPrra[16sEe0AEsAE |:=ADR (CoilDataPtrd) ,
18 CoilSingleData?[0 |:= CoilJingleDataz[@ |,
] input_bits_Prr2[16BE0AESEZ |:=

PR PPN, P! s e r ey

+ # ModbusRTU_Master_Fun_CO.. ModbusRTU_Master...

¥
&

ModbusRTU_Master_Int_CO... ModbusRTU_Master. ..

- & DatePtr2 ARRAY [0..0] OF INT

@ DatePtr2[0] INT 10000
input_registers_Ptr2 ARRAY [0..9] OF INT
CoilDataFtr2 ARRAY [0..9] OF BO...
input_bits_Ptr2 ARRAY [0..9] OF BO...

T
o B W

ADR (input_bits Ptrlj,

P T % W PR PR I 1Y

m

100 % | -

il

m

9 Errori=» ,
10 ErroriDi=>);
= 11 ModbusRTU Master Fun COM2(
1z xExecute |iENEN:= 1,
13 Fun_CodeZ[& |:= Fun Code2[& |,
14 Addr2[3 |:=Rddra 3],
15 Slave2[1 = 1,
1€ DataCount2[1 |:= DataCountZ[1],
17 CoilDataPtr2[162880AEBA8 |:=ADR(CoilDataPtrl) ,
18 CoiljingleData2[@ |:= CoilSingleDatazl o |
9 input_bits_Ptr2[168860AESES |:

Tl ATT L4 mmans wmerd ok mana Tl

-167-

m

100 % |fEh -

AX series programmable controller software manual Project Instance

B.2 Controller and DA200 Series Servo Drive Configuration Example

In this section, we will write a program to control four DA200 series servo drives to drive four motor axes for constant
forward and reverse motion.

1. Select File > New Project from the menu to create a new standard project. Set the device to INVT AX7X, and select

Structured Text (ST) as the programming language. Edit the project information as needed, as shown in the
following figure.

=] New Project X
Categories Templates
[Libraries . % 9
{1 Projects tS =

Empty project HMI project Standard Standard
project project w...

A project containing one device, one application, and an empty implementation for PLC_PRG]

Name [DA200 |
Location lE:\codesvs v]
Standard Project X

You are about to create a new standard project. This wizard will create the following
— objects within this project:
i _a

- One programmable device as specified below

- A program PLC_PRG in the language specified below

- A cyclic task which calls PLC_PRG

- & reference to the newest version of the Standard library currently installed.

Device INVT AX7X (Shenzhen INVT Electric Co., Ltd.) ~

PLC_PRG in |Structured Text (ST) e

Project Information X

File Summary Properties Statistics Licensing Signing

Company INVT

Title | DA200 Control 4 motor axis

Version 1.0.0.0 [released
Library C-*-=-=—

Default namespace

Author yard
Description DA200 Control 4 motor axis
Library compatibility |Invtmatic Studio V1.0.2 v

The fields in bold letters are used to identify alibrary.

[J Automatically generate ‘Library Information' POUs
[] Automatically generate ‘Project Information’ POUs

o1 o

2. Right click the device from the device panel and select Add Device to add the EtherCAT master. Select EtherCAT

-168-

AX series programmable controller software manual Project Instance

Master SoftMotion with a version of 3.5.15.0, as shown in the following figure.

[Add Device X

Name |EmerCAT_Masber_Sofu\‘loﬁon

Action
(@ Append device (O Update device
|Sh’ing for a fulltext search | Vendor | <all vendors> =
Name Vendor Version Description 63
+ m Miscellaneous
= m Fieldbuses
+ CAN CANbus
= pel EtherCAT
= i Master
m EtherCAT Master 35 - Smart Software Solutions GmbH 3.5.15.0 EtherCAT Master...

m |ElherC.aT Master SoftMotion 35 - Smart Software Solutions GmbH 3.5.15.0 EtherCAT Master SoftMotion. ..
+- HB Ethernet Adapter
+- = EtherNet/IP
+- {2} Home&Building Automation
+- W Modbus

m Mame: EtherCAT Master SoftMotion
Vendor: 35 - Smart Software Solutions GmbH

Categories: Master -
Version: 3.5.15.0 ﬁ
Order Number: =

Description: EtherCAT Master SoftMotion...

Append selected device as last child of
Device

€ (You can select another target node inthe navigator while this window is open.)

Add Device Close

3. Right click the device EtherCAT Master SoftMotion from the device panel and select Add Device to add 4 servo
drives. Select INVT_DA200_171, as shown in the following figure.

ﬂi Add Device X

Name ‘IN\:’T_DAZDD_ZSZ

Action
(® Append device () Insert device () Update device
|5h'\ng for a fulltext search | Vendor | <Al vendors> ~
MName Vendor =
= m Fieldbuses
= bk EtherCAT
= D;ﬁ Slave
+-- [l Delta Electronics, Inc. - Servo Drives
+- |1 ifm electronic - ifm electronic EtherCAT Devices
- [INVT
= INVT INDUSTRIAL
= Servo Drives
4 |DAZUU-N EtherCAT(CoE) Drive INVT INDUSTRIAL
+--| 1l Panasonic Corporation, Appliances Company - AC Servo Driver
+ U Pl Uemeifin Paclne Covvin Pucios 404 &
< >

Group by category [] Display all versions (for experts anly) [] Display outdated versions

m Mame: DA200-N EtherCAT({CoE) Drive -
Vendor: INVT INDUSTRIAL
Categories: Slave
Version: Revision=16#000000AB
Order Number: INVT_DA200_252
Description: EtherCAT Slave imported from Slave ¥ML: INVT_DA200_EtherCAT_V262_200313.xml Device:
DA200-N EtherCAT(CoE) Drive

Append selected device as last child of
EtherCAT_Master_SoftMotion

% (You can select another target node inthe navigator while this window is open.)

Add Device Close

4. Right click an INVT_DA200_171 device in the device panel and select Add SoftMotion CiA402 Axis. Preform the

-169-

AX series programmable controller software manual Project Instance

same procedure for the remaining 3 INVT_DA200_171 devices, as shown in the figure.

Devices > 0 X
=5 pazoo -
=[] Device (INVT AX7X)
=2l PLC Logic

=-1C} Application
m Library Manager
PLC_PRG (PRG)
H @ Task Configuration
=5 EtherCAT Task
& PLC_PRG
Eiﬁ Trace
} HIGH PULSE 10
E ﬁ EtherCAT_Master_SoftMotion (EtherCAT Master SoftMation)
= [l ™T_DAZ00_171 (DA200-M EtherCAT(CoE) Drive)
H&P 5M_Drive_GenericDSP402 (SM_Drive_GenericDSP402)
=[] ™WT_DAZ00_171_1 (DA200-N EtherCAT(CoE) Drive)
H&P 5M_Drive_GenericDSP402_1 (SM_Drive_GenericDSP402)
= [l ™VT_DAZ00_171_2 (DA200-N EtherCAT(CoE) Drive)
H&P sM_Drive_GenericDSP402_2 (5M_Drive_GenericD5P402)
=[] ™VT_DA200_171_3 (DA200-N EtherCAT(CoE) Drive)
3P 5M_Drive_GenericDSP402_3 (SM_Drive_GenericDSP402)
‘& SoftMotion General Axis Poal

5. Double-click the PLC_PRG and enter the following codes on the statement editor:

PROGRAM PLC_ PRG

VAR
iStatus: INT;
MC Power 0: MC Power;
MC Power 1: MC Power;
MC Power 2: MC Power;
MC Power 3: MC Power;
MC MoveAbsolute 0: MC MoveAbsolute;
MC MoveAbsolute 1: MC MoveAbsolute;
MC MoveAbsolute 2: MC MoveAbsolute;
MC MoveAbsolute 3: MC MoveAbsolute;
END VAR

6. Enter the following code in the main code editor:

CASE iStatus OF

MC Power 0 (Axis:= SM Drive GenericDSP402, Enable:= TRUE, bRegulatorOn:= TRUE,
bDriveStart:=TRUE ,);

MC Power 1 (Axis:= SM Drive GenericDSP402 1, Enable:= TRUE, bRegulatorOn:= TRUE,
bDriveStart:=TRUE ,);

-170-

AX series programmable controller software manual Project Instance

MC Power 2 (Axis:= SM Drive GenericDSP402 2, Enable:= TRUE, bRegulatorOn:= TRUE,
bDriveStart:=TRUE ,);

MC Power 3 (Axis:= SM Drive GenericDSP402 3, Enable:= TRUE, bRegulatorOn:= TRUE,
bDriveStart:=TRUE ,);

IF MC Power 0.Status AND MC Power 1.Status AND MC Power 2.Status AND MC Power 3.Status
THEN

iStatus:=iStatus+l;

END IF

MC MoveAbsolute 0 (Axis:=SM Drive GenericDSP402 , Execute:=TRUE, Position:=50, Velocity:=3,

Acceleration:= 2, Deceleration:= 100,);

MC MoveAbsolute 1(Axis:=SM Drive GenericDSP402 1, Execute:= TRUE, Position:=50 ’
Velocity:=3 , Acceleration:= 2, Deceleration:=100,);
MC MoveAbsolute 2 (Axis:=SM Drive GenericDSP402 2, Execute:= TRUE, Position:=50 p
Velocity:=3 , Acceleration:= 2, Deceleration:=100,);
MC MoveAbsolute 3 (Axis:=SM Drive GenericDSP402 3, Execute:= TRUE, Position:=50 ,
Velocity:=3 , Acceleration:= 2, Deceleration:=100,);

IF MC MoveAbsolute 0.Done AND MC MoveAbsolute 1.Done AND MC MoveAbsolute 2.Done AND
MC MoveAbsolute 3.Done THEN

MC MoveAbsolute 0 (Axis:=SM Drive GenericDSP402 , Execute:= FALSE,);
MC MoveAbsolute 1 (Axis:=SM Drive GenericDSP402 1 , Execute:= FALSE,);

MC MoveAbsolute 2 (Axis:=SM Drive GenericDSP402 2 , Execute:= FALSE,);

MC MoveAbsolute 3 (Axis:=SM Drive GenericDSP402 3 , Execute:= FALSE,);

iStatus:=iStatus+1l;

END IF

MC MoveAbsolute 0 (Axis:=SM Drive GenericDSP402 , Execute:= TRUE, Position:=0 , Velocity:=3,

Acceleration:= 2, Deceleration:= 100,);

MC MoveAbsolute 1(Axis:=SM Drive GenericDSP402 1, Execute:= TRUE, Position:=0, Velocity:=3,

Acceleration:= 2, Deceleration:=100,);

MC MoveAbsolute 2 (Axis:=SM Drive GenericDSP402 2, Execute:=TRUE, Position:=0, Velocity:=3,

Acceleration:= 2, Deceleration:=100,);

MC MoveAbsolute 3 (Axis:=SM Drive GenericDSP402 3, Execute:= TRUE, Position:=0 , Velocity:=3,

Acceleration:= 2, Deceleration:=100,);

IF MC MoveAbsolute 0.Done AND MC MoveAbsolute 1.Done AND MC MoveAbsolute 2.Done AND
MC MoveAbsolute 3.Done THEN

MC MoveAbsolute 0 (Axis:=SM Drive GenericDSP402 , Execute:= FALSE,);
MC MoveAbsolute 1 (Axis:=SM Drive GenericDSP402 1 , Execute:= FALSE,);

MC MoveAbsolute 2 (Axis:=SM Drive GenericDSP402 2 , Execute:= FALSE,);

-171-

AX series programmable controller software manual Project Instance

MC MoveAbsolute 3 (Axis:=SM Drive GenericDSP402 3 , Execute:= FALSE,);
iStatus:=1;
END IF
END CASE

The main body of the program takes the form of a state machine that determines which part of the code to execute
through the value of iStatus. When the program starts, the iStatus value is 0 and the program initializes the MC_Power
function block and enables the corresponding motor shaft. If the enabling is successful, the iStatus value is 1 and the
program enters the next state. When the iStatus value is 1, the MC_MoveAbsolute function block is executed, and the
motor rotates to the specified position at the specified speed. If the motor moves normally to the specified position, the
iStatus value is increased by 1, and the motor enters the next state. When the iStatus value is 2, execute the
MC_MoveAbsolute function block in the other direction. The motor continues to rotate to the specified position at the
speed specified by the function block. If the motor moves normally to the specified position, the iStatus value is reset to 1.

The procedure is executed repeatedly to implement the forward and reverse movement of the motor.

Double-click EtherCAT Master SoftMotion from the device panel and click Browse to select the EtherCAT
communication network eth0. Select the distributed clock as needed. In this example, select 4000us for the cycle time.
See the figure.

& EtherCAT Task n# SM_Drive_GenericDSP402 PLC_PRG (7] EtherCAT Master_SoftMotion X -
General [~ Autaconfig Master/Slaves EtherCAT‘-
SRl A g EtherCAT NIC Setting

Destination address{MAC) FF-FF-FFFFFFFF Broadcast [] Enable redundancy

Log

Source address (MAC) BO-7E-11-3D-31-5C I Browse..
Network Name

EtherCAT /0 Mapping

EtherCAT IEC Objects (®) Select network by MAC (0) Select network by name
Status Distributed Clock Options
Information Cycle time 4000 s

e
=

Sync offset 20
[Syne window monitaring

Sync window i s ps

Click the button on the toolbar to compile the code. After compiling, click the "E button on the toolbar to log in
to the controller. The servo starts normally, the motor runs smoothly, and the upper computer interface is shown in the
following figure.

Devices * o X
=13 DAZo0 b
= ﬂj Device [connected] {INVT AX7X)
= @ﬂ PLC Logic

= r’; Application [run]
m Library Manager
PLC_PRG (PRG)
= @ Task Configuration
=45 8 EtherCAT Task
) pLC_PRG
a!’i Trace
"L HIGH PULSE IO
= m EtherCAT_Master_SoftMotion (EtherCAT Master SoftMotion)
=3 [vT_DAZ00_171 (DA200-N EtherCAT(CoE) Drive)
Mg SM_Drive_GenericDSP402 (SM_Drive_GenericDSP402)
=43] INVT_DA200_171_1 (DA200-N Ether CAT(CoE) Drive)
H4P SM_Drive_GenericDSP402_1 (SM_Drive_GenericDSP402)
=3 [mvT_DA200_171_2 (DAZ00-N EtherCAT(CoE) Drive)
Mg SM_Drive_GenericDSP402_2 (SM_Drive_GenericDSP402)
=3) MVT_DA200_171_3 (DA200-N EtherCAT(CoE) Drive)
Mg SM_Drive_GenericDSP402_3 (SM_Drive_GenericDSP402)
2 SoftMotion General Axis Fool

-172-

AX series programmable controller software manual

Project Instance

5 EtherCAT Task [# SM_Drive_GenericDSP402 V[5] PLC_PRG x [[{] EtherCAT Master_SoftMotion] -
Device Application.PLC_PRG
Expression Type Value Prepared value Address Comment ~
@ iStatus INT 1 [}
* @ MC_Power_0 MC_Power
® @ MC_Power_l MC_Power
* @ MC_Power_2 MC_Power
* @ MC_Power_3 MC_Power
+ § MC_MoveAbsoluts D MC_MoveAbsolute
v
< >
1|© CASE iStatus _1i__| OF ~
2| & MC_Power_0{Axis:= SM_Drive_GenericDSP402, Enable[ENEl:= TRUE, bRegulatorOn]
4| MC_Power 1(Axis:= SM Drive GenericDSE402 1, Enablel TRUE, bRegulatorOn) TRUE, bDriveStart| A
s|© MC_Power_2(Awis:= SM_Drive_GenericDSP402_2, Enzblel TRUE, bRegulatorOn| TRUE, bDriveStart| A
MC Powsr 3(Axis:= SM Drive GenericDSP402_3, Ensblel TRUE, bRegulatorOn) TRUE, bDriveStart| A
1=} IF MC_Power_0.Statusl AND MC_Power_l.Statusli AND MC_Power_2.Status AND MC_Power_3.Status
iStatus[T J=iStatus T Ji:
END_IF
1:
11| % MC_MoveRbsolute_0 (Axis:=SM Drive_GenericDSP402 , Execute TRUE, Position 80 J:=50 , Velocity[3 =3 , Acceleration 2 |:= 2, Dece
12 MC_MoveRbsolute 1 (Rxi ¥ _Drive GenericDSP402_1, Executel TRUE, Position[50 | , Velocity 3 | , Bcceleration 2 |
13| MC MoveRbsolute 2(Axis:=SM Drive GenericD3P402 2, Executcl TRUE, Position[50| , Velocityl 3 =3 , Acceleration 2 |
14 MC_MoveRbsolute 3 (Rxis:=SM Drive GenericDSP402_3, Executcfil TRUE, 0, Velocity{ 8 =3 , Boceleration[2 s
B 15|¢ IF MC Movedbsolute 0.Done[ENEH AND MC MoveRbsolute 1.Donclil AND MC MoveRbsolute 3.Done[E THEN
16 MC_MoveRbsolute_0 (Axis:
17 MC_Movedbsolute 1 (Axi
MC_Movelbsolute_2 (Axis:=SM_Drive_GenericDSF402_2 , Execute|
MC Moveibsolute 3(Axis:=SM Drive GenericDSP402 3 , Execute[EENE
iStatus[1 |r=iStatus[1 hl;
END_IF
<

Double-click INVT_DA200_171 from the device panel to view or

mapping interface. See the figure.

set the current motor running parameters in the

/0

& EthercAT Task [m# SM_Drive_GenericDsP402 PLCPRG [[f] EtherCAT Master_SoftMotion Vi mvT_DA200_171 x -
Fenz] Find Fiter Show all ~ &k Add FB for 10 Channel.. = Go to Instance J
S Variable Mapping Channel Address Type Current Value Prepared Value Unit Description

ER) Control Word %QW22 UINT 15 Control Word
Startup Parameters * KO Target Position %QD12 DINT 205891400 Target Position

+ Ty Target Velocity %QD13 DINT -196608 Target Veladity
EtherCAT1/0 Mapping e Made of Operation %QBS6 SINT 8 Made of Operation
SeETE T +-"g Target torque %QW2e INT 0 Target tarque

E) Touch probe contral %WQW30 UINT 0 Touch probe contral
Status "y Positive torque limit %QW31 UINT 0 Positive torque limit

E] Negtive torque limit %QW32 UINT 0 Negtive torque limit
Lkograin " Max profile velacity %QD17 UDINT 0 Max profil velocity

£] Status Word YIW2 UINT 4919 Status Word

-4y Pasition Actual Value %ID2 DINT 205885807 Position Actual Value

e Speed Actual Value %ID3 DINT ~ -197133 Speed Actual Value

- Torque Actual Value W8 T 46 Torque Actual Value

- Operation Mode Display ~ %I818 SINT 8§ Operation Mode Display

-4 Current Actual Value %W INT 2 Current Actual Value

Eo] Touch Probe Status YaIW 11 UINT 0 Touch Probe Status

L] Touch Probe Value %ID6 DINT 0 Touch Probe Value

E] Digital outputs %ID7 UDINT D Digital outputs

] Digital inputs %ID8 UDINT D Digital inputs

‘ ResebMapping | Alwaysupdatevarisbles |Enabled 2 (sways in bus cycle t2ck)
"’o = Create new variable "% =Mapto existing variable

Select Device > PLCShell. Click the E] button at the bottom right corner and select prcload. Then the CPU load rate

of the current controller will be shown as follows.

& EtherCAT Task [h# PCFRE ([

SM_Drive_GenericDSP402

EtherCAT_Master_SoftMotion

1 mwT_DaAz00_171

" pevice x

Communication Settings [version

u-boot V200 kernmel V200 rootfs V202
Applications

Backup and Restore

plcload

Files

ELC load average: 30%
Log

CozeIn o
LIS PLC Core load: 0%
PLC Shell

Users and Groups

Access Rights

Symbal Rights

IEC Objects

Task Deployment

Status

Information

picload

-173-

AX series programmable controller software manual Project Instance

To observe the operation of the motor shaft in an intuitive way and track the actual position of the shaft, create a new trace.
Right click Application and select Add Object > Trace. Set the task attribute to EtherCAT_Task, and add
PLC_PRG.MC_Power_0.Axis.fActPosition and PLC_PRG.MC_Power_0.Axis.fActVelocity variables in Trace. Adjust
the display properties of the coordinates appropriately. Right click the graph and select Download Trace to track the
actual position and actual speed of the motor, as shown in the following figure.

§& EtherCAT Task a# SM_Drive_GenericDSP402 PLC_PRG afl Trace x -

4 Configuration
50 Add Varisble

mm PLC_PRG.MC_Power_0.Axis.fActPosition |~
mm PLC_PRG.MC_Power_0.Axis.fActVelocity

ANA

Nz L | T —

30s m 1m30s

i astbuld: @ 0 &0 Precompie + T [NEHEEEI Program loaded Program unchanged Time: 1m49s298ms Value: 38 Trace stopped Project user: {nobady) 1

B.3 Controller and DA200 Series Servo CANopen Configuration Example

In this section, we will write a program to connect to the DA200 series servo drive through CANopen communication.

1. Referto section 2.4 “Project creation” to creat a project, as shown in the following figure.

CANOpen test.project* - Invtmatic Studio
File Edit View Project Build Online Debug Tools Window Help

Eed & dh 27 4 05 &9+ [J | ¥4 | Application [
 Devices v 3 Xx [g] Pc_PRG x
= 3] CANOpen,_test - 1| PROGRAM PLC_ERG
=[] Device NVT AX7X) VAR
= ;']1] PLC Logic v
=1} Application

m Library Manager
|£] PLC_PRG (PRG)
= E Task Configuration
= @ MainTask
&) PLC_PRG
‘A HIGH_PULSE_IO
A SoftMotion General Axis Pool

2. In the Tool bar, select Tools > Device Repository, click Install to select the device profile
INVT_DA200_CANopen.eds, and click Open. Then the DA200 CANopen device profile can be added successfully.

-174-

AX series programmable controller software manual

Project Instance

Studio

- a x
Build QOnline Debug
=3 IR [#4 | Application [Device: PLC Logic] +» @8 %) wm | o | M B
Devices. > X H/. PLCPRG | () Canbus [CANopen_Manager X ~
=13 caNgpen_test - P
2 - % Device Repository x
= [l Device (INVT AX7X) £
=10 PLC Logic
Location | System Repository «| [EditLocations...
=) Application
(C:\ProgramDatallnvtmatic Studio\Devices)
(i Library Mar
PLC_PRG (|
Installed device descriptions
= [& Task Confic
= @ Maine |Sting for 3 fultext search vendor: | <All vendors> » I Install I
B [Name Vendor Version D Unistal
& HIGH_PULSE 1O [cMMP-ASC5-114P3M3_SoftMotion Festo AG .Co. KG 43.0.0 Sy
* @ caeus caneus) [cmp-as-C5-3a-M0_Softmotion Festo AG &.C0. kG 4.3.00
= (@ canopen Man [crmp-asC5-3a-M3 _Softhotion Festo AG &Co. KG 4.3.0.0
@ pazo o [pazoo orive DAZ00,invt Revision=1650000010
3 saftotion Generg [0Az00 and D180 Drive DA300 and DA 180, invt Revision =16000000; |
[DIs-2_SoftMotion Metronix GmbH 4.40.0
B ecosTer200_SoftMotion Jenaer Antriebstechrik GmbH 4400
[ecovario 114/214/414_Softvotion Jenaer Antriebstechnik GmbH 4.4.0.0
[emca£c-67-..CO[s402) Festo AG .0, KG 4.0.0.0 .
< > Details...
< 5]
|52 Devices [I Pous < >
[E Messages - Total 0 error(s), 0 warning(s), 0 message(s)|
Lastbuid: € 0 0 Precompile @ Project user: (nobody) (%)

3.
successfully.

- Invtmat

o X
| Ele Edit View Project Build Online Debug Iools Window Help S
BEEIS S EREX(AGAGIN A =] [T |4 | Application [Device: PLC Logic] - & &) w N[> | s
e ~ ® X| (@ Add Device X =
= [Canpen_test
= Device (DWT Ax7X) Name ~[CANbus O
= Bl pLcLogic Action
=} application (@ Append device () Insert device () Flug device (O Update device
) Library Manager
PLC_PRG (PRG) String for a fulltext search ‘ vendor | <All vendors> -
= (&8 Task configuration Name. Vendor Version Descriptic 0% @
=& ManTask #- [miscelaneous | =--°.
&) pic_pre = (@ Fieldbuses
3 HIGH_PULSE_IO - eAN CANbus
2 softoton General Axs Pocl @ 35 - Smart Software Solutons G 3,5,15.0 Needed for,
(3 metx canbus 35 -SmartSoftware Solutions GmbH 3.5.15.0 CANbus on ¢
% EtherCAT 2
>
Group by category [] Display all versions (for experts only) [Display outdated versions
@ mame:canbus ~
Vendor: 35 - Smart Software Solutions GrbH
Categories: CANbus -
Version: 3.5.15.0 g
Order Number: -
Necrrintinn: Nasdad for =l fisldbh ceme which rommnicate over the 7
Append selected device as last child of
Device
< >
2 Deveces ® (You can select another target node in the navigator while this window is open.)

‘[@ Messages - Total 0 error(s), 0 warning(s), 0 mzssagz(s)}

4,
added successfully.

Close

Q@

- a X
View Project Buld Online Debug Iools Window Help Y
| & Bn B X (06 254805 A B2 - [|#¥ | Application [Device: PLC Logicl ~ ©8 ©% , w W[4 B
Devices. > ¥ X | [Add Device X ~
=) canOpen_test
= (@ Deviee (T AX7X) Name ~[CAMopen_Manager 0
= B0 pLc Logic Action
= £} Application @ Append device (O Insert device | F = O Update device
i) Ubrary Manager
PLC_PRG (PRG) String for 2 fultext search | vendor | <all vendors> -
= (B Task Configuration Name Vendor Version 100% @
=& ManTask = [Fieldbuses
8] pLC PRG = €A CANopen
'3 HIGH_PULSE_IO = €A CANopenManager
[canbus (caNbus) ([cANopen_Manager 35 - Smart Software Solutions GmbH ~ 3.5.15.0
"3 softMotion General Axis Pool [caNopen_Manager 512 35 - Smart Software Solutons GmbH 3.5.15.0
[caNoven Manacer SoftMotion 35 - Smart Software Sokutions GrbH ~ 3.5.15.0 ¥
< >
Group by category [] Display all versions (for experts enly) [] Display outdated versions
@ mame: CANopen_Manager "
Vendor: 35 - Smart Software Solutions GmbH
Categories: CANopeniManager -
Version: 3.5.15.0 g
Order Number: -
Description: CANopen Manager
v
Append selected device as last child of
Canbus
< >
52 oevices [Pous #® (You can select another target node inthe navigator while this window is open.)

& wiessases ~Total 0 zrrorts), 0 waming(), 0 messagels)

Close

Add Device

-175-

Right click Device in the device panel, and select Add Device > CANbus. Click Add Device, and CANbus is added

Right click CANbus, and select Add Device > CANopen_Manager. Click Add Device, and CANopen_Manager is

AX series programmable controller software manual

Project Instance

5.

Right click CANopen_Manager and select Add

added successfully.

Device > DA200 Drive. Click Add Device, and DA200 Drive is

is ben test.proje
Fle Edit View Project Build Online Debug Tools Window Help \ 4
|
e & [RRE L [| #¥ | Application [Device: PLC Logic] - ©8 LY > M 5
Devices > # X | [add Deviee X | -
=) cAMOpen_test b
=@ Device (VT AX7X) Name |DA1[IEI7DHVE il
=2l PLC Logic Action
=-1C} Application @ Append device () Insert device () Update device
il Library Manager
PLC_PRG (PRG) String for a fulltext search \ Vendor | <All vendors> -
= Task Configuration N Vend ol | I
@@ g ame endor 100 % |
=2 MairTask [cMMP-AS-C5-3A-M0_SoftMotion Festo AG & Co. KG =
& ric_re [cMMP-as-C5-3A-M3_SoftMotion Festo AG & Co. KG
" HIGH_PULSE_IO [[paz00 Drive DA200,invt
[canbus (canbus) (i DA300 and DA180 Drive: DA300 and DA180,invt
(CANopen_Manager (CANopen_Manager) [ors-2_softation Metronix GmbH
"% SoftMation General Axis Pool i cosTER200 SoftMotion Jenaer Aniriebstechrik 1 ¥
< >
Group by category [[] Display all versions (forexperts only) [[] Display outdated versions
@ mame:DA200Orive P’y
Vendor: DAZ00,invt
Categories: Remote Device ==
Version: Revision=16£00000104, FieVersion=1.1 %
Order Humber: DA200 hd
Description: Imported from INVT_DA200_CANopen_v2.60.eds
v
Append selected device as last child of
CANopen_Manager
< % 100 % |
< Devices | [POLs & (You can select another target node inthe navigator while this window is open.) S

[ET Messages - Total 0 error(s), 0 warning(s), 0 message(s)

Close

%]

In the CANbus overview interface, set the baud rate to be the same as that of the DA200 CANopen servo (DA200
P4.02). In the DA200_Drive overview interface, set the node ID to be the same as that of the DA200 CANopen servo

(DA200 P4.05).

After completing the physical connection of the device, download the program, log in the device, and you can see
that the CANopen is connected to DA200 communication successfully.

CAN_OPEN test project’ - Invimatic Studio - o x
Fle Edit View Project Build Online Debug Tools Window Help 4
1Ed & a LR i 5 | pplication [Device: PLC Logic] ~ e [=

Devices * % X [o200 brve x -

= Cw oRe et -

7 Device [connected] (VT A == canopen e
-8 :;“"” = 7005 s Diagnosicsessage
[r——— 008 Diagnosis Info =
I i :;ﬁ':jm - Current Network ID] Currently used Network ID. Can be changed at runtime by DeviceDiagnosi
& e T Current Baudrate 500 Currently used Baudrate. Can be changed at runtime by DeviceDiagnosis |
& rc_pme Bus state ACTIVE Oniy few CAN bus errors 5o far. The emmor counters of the chip are below
A Pep——— ChMopen IEC Objects Bus Alam 1 CAN driver signals a bus alarm a critial bus error occurred. The fildbus| -
@ cartus (cavens) coatee Bus Error counter] Number of occurred bus errors. Wil be reset if dagnosis wil be adnonied:
3 canopen_Mansger (Canopen_Manager) Last Driver OpenEror No error occurred.
@ oa200_orive (DA200 Drive) Taformatien Driver Instances 1 Number of driver instances curmently opened by underlying fieldbus stadks|
'3 SoftMotion Genersl Axis Podl Bus Load] Bus load in percent. If CAN driver doas not support bus load measurement
Tx Counter 362 Number of successful sent CAN telegrams.
T Error Counter 0 Value of transmit error counter provided by CAN chip.
Rx Counter 301 Number of successful recesved CAN telegrams. N

2 vevees | 1) 70 « >

Watch 1 > X
Expression Application Type Value Prepared valus Execution point Ac

< >

B watch 1 @l Brestpants

B vemmaaes o e

Device user: ananymass Lasibid: @0 ©0 Precompie s RN Program loaded Frogram unchanged Froject user (nobody)]

Note:

If there is a high requirement for real-time data, the CAN bus load shall be less than 30% in order to avoid a small

delay in data sending and receiving due to bus competition.

For CAN buses with synchronization requirements, the set value of the window length in the bus synchronization
message is slightly less than the cycle period.

-176-

AX series programmable controller software manual Project Instance

Enable SYNC producing

COBID (Hex) 16% |30 =
Cycle period {ps) a0000 =
Window length {ps) 53000 =

Enable SYNC consuming

® The task period of the task where CANopen is located shall be slightly longer than the actual execution time of the
task.

® To ensure that the master monitors the slave properly, the Enable heartbeat producing option in the slave shall be

checked.
Guarding
Enable nodeguarding Enable heartbeat producing
Guard time {ms) 0 = Producer time {ms) |200 =
Life time factor 0 = ;

= J~ Heartbeat consuming (1/1 active)

-177-

AX series programmable controller software manual

SMC_ERROR description

Appendix C SMC_ERROR description

Error
Function block ENUM value Description
number
0 All function blocks |SMC_NO_ERROR No error
. SMC_DI_GENERAL_COMMUNIC |Communication error. For example,
1 Drivelnterface - - - .
ATION_ERROR sercos ring has broken
2 Drivelnterface SMC_DI_AXIS_ERROR Axis error
. Position outside of permissible
10 Drivelnterface SMC_DI_SWLIMITS_EXCEEDED L
range of SWLimit
11 Drivelnterface SMC_DI_HWLIMITS_EXCEEDED |Hardware end switch is active
. SMC_DI_HALT_OR_QUICKSTOP |Drive status Halt or Quickstop is not
13 Drivelnterface
_NOT_SUPPORTED supported
14 Drivelnterface SMC_DI_VOLTAGE_DISABLED |Drive has no power
Current position given from the
. SMC_DI_IRREGULAR_ACTPOSIT| . i
15 Drivelnterface ION - - - drive seems to be irregular. Check
the communication.
Position lag error. Difference
16 Drivelnterface SMC_DI_POSITIONLAGERROR |between set and current position
exceeds the given limit
20 All motion generating [SMC_REGULATOR_OR_START_ |Controller enable not done or brake
function blocks NOT_SET applied
Axis in wrong SMC_WRONG_CONTROLLER_M L
21 Axis in wrong controller mode
controller mode |ODE
Motion creating module has not
. SMC_FB_WASNT_CALLED_DURI :
30 Drivelnterface been called again before end of the
NG_MOTION)
- motion.
. Type of given AXIS_REF variable is
31 All function blocks |SMC_AXIS IS NO_AXIS_REF
not AXIS_REF
o AXIS_REF variable has been
Axis in wrong SMC_AXIS_REF_CHANGED_DU - .
32 exchanged while the module was
controller mode RING_OPERATION]
active.
. SMC_FB_ACTIVE_AXIS_DIABLE |Axis disabled while being moved.
33 Drivelnterface -~ - -
MC_Power.bRegulatorOn
Axis in its current state cannot
) . execute a motion command,
All motion generating [SMC_AXIS_NOT_READY_FOR_ .)
34] because the axis doesn't signal
function blocks MOTION .
currently that it follows the target
values
.) SMC_VD_MAX_VELOCITY_EXCE [Maximum velocity fMaxVelocity
40 VirtualDrive
EDED exceeded
.) SMC_VD_MAX_ACCELERATION_ [Maximum acceleration
41 VirtualDrive]
EXCEEDED fMaxAcceleration exceeded
.) SMC_VD_MAX_DECELERATION_ [Maximum deceleration
42 VirtualDrive]
EXCEEDED fMaxDeceleration exceeded
) SMC_3SH_INVALID_VELACC_VA [Invalid velocity or acceleration
50 SMC_Homing N - - -
LUES values
) SMC_3SH_MODE_NEEDS_HWLI |Mode requests for safety reasons
51 SMC_Homing)
- MIT use of end switches

-178-

AX series programmable controller software manual

SMC_ERROR description

Error
Function block ENUM value Description
number
SMC_SetControllerM
70 q SMC_SCM_NOT_SUPPORTED |Mode not supported
ode
- SMC_SetControllerM [SMC_SCM_AXIS_IN_WRONG_ST|In current mode, controller mode
ode ATE cannot be changed
SMC_ST_WRONG_CONTROLLE))
75 SMC_SetTorque - - - Axis not in correct controller mode
R_MODE
SMC_ResetAxisGrou |[SMC_RAG_ERROR_DURING_ST .
80 - - - - - Error at startup of the axis group
p ARTUP
SMC_ChangeGearin .
90 - SMC CGR _ZERO VALUES Invalid values
gRatio - - -
. Gearing parameters must not be
SMC_ChangeGearin))
91 Rati SMC_CGR_DRIVE_POWERED |changed as long as the drive is
atio
g under control
SMC_ChangeGearin |SMC_CGR_INVALID_POSPERIO . » .
92) Invalid position period (<= 0)
gRatio D
Axis contain no information on cycle
110 MC_Power SMC_P_FTASKCYCLE_EMPTY i
time (fTaskCycle = 0)
120 MC_Reset SMC_R_NO_ERROR_TO_RESET |Axis without error
SMC_R_DRIVE_DOESNT_ANSW |
121 MC_Reset ER Axis does not perform error-reset
SMC_R_ERROR_NOT_RESETTA
122 MC_Reset - - - - Error could not be reset
BLE
SMC_R_DRIVE_DOESNT_ANSW |Communication with the axis did not
123 MC_Reset - - - -
- ER_IN_TIME work
MC_ReadParameter,
130 MC_ReadBoolParam [SMC_RP_PARAM_UNKNOWN Parameter number unknown
eter
Error during transmission to the
MC_ReadParameter, drives. See error number in
131 MC_ReadBoolParam |SMC_RP_REQUESTING_ERROR (function block instance
eter ReadDriveParameter, Library
SM_DriveBasic
MC_WriteParameter,
) Parameter number unknown or
140 MC_WriteBoolParam |SMC_WP_PARAM_INVALID .
writing not allowed
eter
MC_WriteParameter, See error number in function block
141 MC_WriteBoolParam |SMC_WP_SENDING_ERROR instance WriteDriveParameter,
eter Library Drive_Basic
SMC_H_AXIS_WASNT_STANDST|))
170 MC_Home ILL - - - Axis has not been in standstill state
SMC_H_AXIS_DIDNT_START_HO . i
171 MC_Home - - - - Error at start of homing action
MING
172 MC_Home SMC_H_AXIS_DIDNT_ANSWER |Communication error
SMC_H_ERROR_WHEN_STOPPI |Error at stop after homing.
173 MC_Home .
- NG Deceleration may not be set
SMC_MS_UNKNOWN_STOPPIN
180 MC_Stop -~ - Unknown error at stop
G_ERROR
SMC_MS_INVALID_ACCDEC_VA |[Invalid velocity or acceleration
181 MC_Stop -~ - -
LUES values

-179-

AX series programmable controller software manual

SMC_ERROR description

Error
Function block ENUM value Description
number
SMC_MS_DIRECTION_NOT_APP|)
182 MC_Stop -~ - - Direction = shortest not applicable
LICABLE
Axis is in error stop status. Stop
183 MC_Stop SMC_MS_AXIS_IN_ERRORSTOP
cannot be executed
Instance of MC_Stop blocking the
SMC_BLOCKING_MC_STOP_WA |axis by Execute = TRUE has not
184 MC_Stop
SNT_CALLED been called yet. MC_Stop (Execute
= FALSE) has to be called.
SMC_MA_INVALID_VELACC_VAL [Invalid velocity or acceleration
201 MC_MoveAbsolute
- UES values
202 MC_MoveAbsolute |SMC_MA_INVALID_DIRECTION |Direction error
. SMC_MR_INVALID_VELACC_VAL (Invalid velocity or acceleration
226 MC_MoveRelative
- UES values
227 MC_MoveRelative |SMC_MR_INVALID_DIRECTION |Direction error
. SMC_MAD_INVALID_VELACC_VA|lnvalid velocity or acceleration
251 MC_MoveAdditive N - - -
- LUES values
252 MC_MoveAdditive |SMC_MAD_INVALID_DIRECTION |Direction error
276 MC_MoveSuperimpo |SMC_MSI_INVALID_VELACC_VA (Invalid velocity or acceleration
sed LUES values
MC_MoveSuperimpo L
277 q SMC_MSI_INVALID_DIRECTION |Direction error
se
. SMC_MV_INVALID_ACCDEC_VA |[Invalid velocity or acceleration
301 MC_MoveVelocity - - -
LUES values
. SMC_MV_DIRECTION_NOT_APP |Direction = shortest/fastest not
302 MC_MoveVelocity]
LICABLE applicable
325 MC_PositionProfile [SMC_PP_ARRAYSIZE Erroneous array size
326 MC_PositionProfile |[SMC_PP_STEPOMS Step time = t#0s
350 MC_VelocityProfile |SMC_VP_ARRAYSIZE Erroneous array size
351 MC_VelocityProfile |SMC_VP_STEPOMS Step time = t#0s
MC_AccelerationProfi)
375 - | SMC_AP_ARRAYSIZE Erroneous array size
e
MC_AccelerationProfi .
376 - e SMC_AP_STEPOMS Step time = t#0s
400 MC_TouchProbe |SMC_TP_TRIGGEROCCUPIED |Trigger already active
SMC_TP_COULDNT_SET_WIND |Drivelnterface does not support the
401 MC_TouchProbe))
ow window function
402 MC_TouchProbe |SMC_TP_COMM_ERROR Communication error
. SMC_AT_TRIGGERNOTOCCUPIE|_ .
410 MC_AbortTrigger b - - Trigger already de-allocated
426 SMC_MoveContinuo [SMC_MCR_INVALID_VELACC_V |Invalid velocity or acceleration
usRelative ALUES values
SMC_MoveContinuo o .
427 -] SMC_ MCR_INVALID DIRECTION |Invalid direction
usRelative - - -
451 SMC_MoveContinuo [SMC_MCA_INVALID_VELACC_VA|Invalid velocity or acceleration
usAbsolute LUES values

-180-

AX series programmable controller software manual

SMC_ERROR description

Error
Function block ENUM value Description
number
SMC_MoveContinuo o .
452 - SMC_MCA_INVALID_DIRECTION |Invalid direction
usAbsolute
SMC_MoveContinuo [SMC_MCA_DIRECTION_NOT_AP| | i
453 - N - - — |Direction= fastest not applicable
usAbsolute PLICABLE
600 SMC_CamRegister [SMC_CR_NO_TAPPETS_IN_CAM |CAM does not contain any tappets
. Tappet group ID exceeds
601 SMC_CamRegister |SMC_CR_TOO_MANY_TAPPETS
MAX_NUM_TAPPETS
. SMC_CR_MORE_THAN_32_ACC |More than 32 accesses on one
602 SMC_CamRegister
ESSES CAM_REF
625 MC_CamIN SMC_CI_NO_CAM_SELECTED |No cam selected
SMC_CI_MASTER_OUT_OF_SCA) .
626 MC_CamIN LE - - - - - Master axis out of valid range
Velocity and acceleration values
SMC_CI_RAMPIN_NEEDS_VELA N i
627 MC_CamIN - - - - must be specified for ramp_in
CC_VALUES .
- function
Scaling variables
628 MC_CamIN SMC_CI_SCALING_INCORRECT |fEditor/TableMasterMin/Max are not
correct
SMC_CAMBounds,))
- Function block for the given cam
640 SMC_CamBounds_P |[SMC_CB_NOT_IMPLEMENTED))
- os - - - format is not implemented
675 MC_Gearln SMC_GI_RATIO_DENOM RatioDenominator=0
676 MC_Gearln SMC_GI_INVALID_ACC Acceleration invalid
677 MC_Gearln SMC_GI_INVALID_DEC Deceleration invalid
Velocity and
725 MC_Phase SMC_PH_INVALID_VELACCDEC |acceleration/deceleration values
invalid
SMC_PH_ROTARYAXIS_PERIOD |Rotation axis with fPositionPeriod =
726 MC_Phase -~ - 0
All modules using . .
Type of given cam is not
750 MC_CAM_REF as |SMC_NO_CAM_REF_TYPE
- - - - - - MC_CAM_REF
input
Master area, xStart and xEnd, from
SMC_CAM_TABLE_DOES_NOT
751 MC_CamTableSelect - - - - ~ |CamTable is not covered by curve
COVER_MASTER_SCALE
- - data
During coupling of slave axis,
SMC_GIP_MASTER_DIRECTION) o
775 MC_GearlnPos - = - master axis has changed direction
CHANGE)
- of rotation
SMC_BacklashComp Gear backlash fBacklash too large
800 . SMC_BC_BL_TOO_BIG .)
ensation (> position periode/2)
CNC function blocks
1000 |which are supervising|SMC_NO_LICENSE Target is not licensed for CNC
the licensing
Path cannot be processed because
1001 SMC_Interpolator |SMC_INT_VEL_ZERO .
set velocity = 0
1002 SMC_Interpolator |SMC_INT_NO_STOP_AT_END Last path object has Vel _End >0
Warning: GEOINFO-List processed
1003 SMC_Interpolator |SMC_INT_DATA_UNDERRUN .)
in Dataln but end of list not reached.

-181-

AX series programmable controller software manual

SMC_ERROR description

Error
Function block ENUM value Description
number
Reason: EndOfList of the queue in
Dataln not be set. SMC_Interpolator
faster than path generating function
blocks.
SMC_INT_VEL_NONZERO_AT_S)
1004 SMC_Interpolator - - = — = |Velocity at Stop > 0
TOP
SMC_INT_TOO_MANY_RECURSI [Too much SMC_Interpolator
1005 SMC_Interpolator . .
- ONS recursions. SoftMotion-Error
SMC_CHeckVelocities is not the
SMC_INT_NO_CHECKVELOCITIE|last processed function block, that
1006 SMC_Interpolator - - -
- S accesses to the OutQueue-data by
pogDataln
1007 SMC_Interpolator |SMC_INT_PATH_EXCEEDED Internal or numeric error
Velocity and acceleration/
1008 SMC_Interpolator |SMC_INT_VEL_ACC_DEC_ZERO L
deceleration is null or to low
1009 SMC_lInterpolator |SMC_INT_DWIPOTIME_ZERO FB called with dwlpoTime = 0
. |SMC_INT2DIR_BUFFER_TOOQO_S
1050 |SMC_Interpolator2Dir - - - — |Data buffer too small
MALL
_|ISMC_INT2DIR_PATH_FITS_NOT_|Path does not go completely in
1051 |SMC_Interpolator2Dir
IN_QUEUE queue
1100 SMC_CheckVelocitie [SMC_CV_ACC_DEC_VEL_NONP |Velocity and acceleration/
s OSITIVE deceleration values non-positive
) Values of fGapVelocity
SMC_Controlaxisbyp |SMC_CA_INVALID_ACCDEC_VAL . .
1120 lfGapAcceleration/fGapDeceleratio
0s UES .
n non-positive
1200 SMC_NCDecoder |SMC_DEC_ACC_TOO_LITTLE Acceleration value impermissible
1201 SMC_NCDecoder |SMC_DEC_RET_TOO_LITTLE Deceleration value impermissible
SMC _DEC_OUTQUEUE_RAN_E |Data underrun. Queue has been
1202 SMC_NCDecoder .
MPTY read and is empty
SMC_DEC_JUMP_TO_UNKNOW [Jump to line cannot be executed
1203 SMC_NCDecoder . .
- N_LINE because line number is unknown
1204 SMC_NCDecoder |SMC_DEC_INVALID_SYNTAX Syntax invalid
SMC_DEC_3DMODE_OBJECT_N |Objects are not supported in 3D
1205 SMC_NCDecoder
- OT_SUPPORTED mode
) SMC_GCV_BUFFER_TOO_SMAL
1300 SMC_GCodeViewer L - - - - Buffer too small
. SMC_GCV_BUFFER_WRONG_T
1301 SMC_GCodeViewer YPE_ - - — |Buffer elements have wrong type
. SMC_GCV_UNKNOWN_IPO_LIN |Current line of the Interpolator could
1302 SMC_GCodeViewer - - -~
E not be found
All function blocks . .
. Given CNC program is not of type
1500 using SMC_NO_CNC_REF_TYPE
SMC_CNC_REF
SMC_CNC_REF - -
All function blocks .)
. Given OutQueue is not of type
1501 using SMC_NO_OUTQUEUE_TYPE
SMC_OUTQUEUE
SMC_OUTQUEUE
) SMC_3D_MODE_NOT_SUPPORT |Function block only works with
1600 | CNC function blocks
ED 2D paths

-182-

AX series programmable controller software manual

SMC_ERROR description

Error
Function block ENUM value Description
number
. SMC_RNCF_FILE_DOESNT_EXI | _.)
2000 SMC_ReadNCFile - - - - - File does not exist
2001 SMC_ReadNCFile |SMC_RNCF_NO_BUFFER No buffer allocated
. SMC_RNCF_BUFFER_TOO_SMA
2002 SMC_ReadNCFile LL Buffer too small
. Data underrun. Buffer has been
2003 SMC_ReadNCFile |SMC_RNCF_DATA_UNDERRUN)
read, is empty
 |SMC_RNCF_VAR_COULDNT_BE |Placeholder variable could not be
2004 SMC_ReadNCFile
_REPLACED replaced
. Input pvl does not point to a
2005 SMC_ReadNCFile |SMC_RNCF_NOT_VARLIST .
- - - - SMC_VARLIST object
SMC_RNCQ_FILE_DOESNT_EXI | _.
2050 |SMC_ReadNCQueue ST File could not be opened
2051 |SMC_ReadNCQueue|SMC_RNCQ_NO_BUFFER No buffer defined
SMC_RNCQ_BUFFER_TOO_SMA
2052 |SMC_ReadNCQueue L - - - - Buffer too small
2053 |SMC_ReadNCQueue|SMC_RNCQ_UNEXPECTED_EOF|Unexpected end of file
SMC_AxisDiagnostic [SMC_ADL_FILE_CANNOT_BE_O | _.
2100 - - - - — T [|File could not be opened
Log PENED
SMC_AxisDiagnostic Buffer overrun. WriteToFile must be
2101 - SMC_ADL_BUFFER_OVERRUN
Log - - - called more frequently
SMC_RCAM_FILE_DOESNT_EXI | _.
2200 SMC_ReadCAM ST - - - - File could not be opened
2201 SMC_ReadCAM |SMC_RCAM_TOO_MUCH_DATA |Saved cam too big
SMC_RCAM_WRONG_COMPILE .
2202 SMC_ReadCAM - - - Wrong compilation mode
_TYPE
2203 SMC_ReadCAM |SMC_RCAM_WRONG_VERSION |File has wrong version
2204 SMC_ReadCAM |SMC_RCAM_UNEXPECTED_EOF|Unexpected end of file
3001 SMC_WriteDrivePara|SMC_WDPF_CHANNEL_OCCUPI |SMC_WDPF_TIMEOUT_PREPARI
msToFile ED NG_LIST
SMC_WriteDrivePara|SMC_WDPF_CANNOT_CREATE .
3002 - . - - - ~|File could not be created
msToFile FILE
SMC_WriteDrivePara|SMC_WDPF_ERROR_WHEN_RE)
3003 - . - - - - Error at reading the parameters
msToFile ADING_PARAMS
3004 SMC_WriteDrivePara|SMC_WDPF_TIMEOUT_PREPARI [Timeout during preparing the
msToFile NG_LIST parameter list
Nominator of the conversion factor
5000 SMC_Encoder SMC_ENC_DENOM_ZERO dwRatioTechUnitsDenom of the
Encoder reference is 0
SMC_ENC_AXISUSEDBYOTHER |Other module trying to process
5001 SMC_Encoder]]
- FB motion on the Encoder axis
) SMC_ENC_FILTER_DEPTH_INVA| . o
5002 Drivelnterface LD - - - - Filter depth is invalid

-183-

(]
I “Vt E-mail: overseas@invt.com.cn Website: www.invt.com

The products are owned by Shenzhen INVT Electric Co.,Ltd.
Two companies are commissioned to manufacture: (For product code, refer to the 2nd/3rd place of S/N on the name plate.)

Shenzhen INVT Electric Co.,Ltd. (origin code: 01) INVT Power Electronics (Suzhou) Co.,Ltd. (origin code: 06)
Address: INVT Guangming Technology Building, Songbai Road, Address: No. 1 Kunlun Mountain Road, Science & Technology
Matian, Guangming District, Shenzhen, China Town, Gaoxin District, Suzhou, Jiangsu, China
Industrial Automation: EHMI BPLC B VFD M Servo System
B Elevator Intelligent Control System M Rail Transit Traction System
Energy & Power: B UPS EDCIM M Solar Inverter BSVG

B New Energy Vehicle Powertrain System B New Energy Vehicle Charging System

75

B New Energy Vehicle Motor
66001-00759
Copyright© INVT.

Manual information may be subject to change without prior notice. 202301 (V1.4)

	Preface
	Target audience
	Applicable product
	Online support

	Contents
	1 Product Introduction
	1.1 AX series programmable controller
	1.1.1 Overview
	1.1.2 Product configuration and module description
	1.1.3 System application process

	1.2 Programming platform
	1.2.1 Invtmatic Studio
	1.2.2 Software programming interface

	1.3 PLCopen specification

	2 Getting Started
	2.1 Software installation and uninstallation
	2.1.1 Software obtaining
	2.1.2 Software installation requirements
	2.1.3 Preparing
	2.1.4 Installing the software
	2.1.5 Uninstalling the software

	2.2 AX series programmable controller connection
	2.3 PC communication configuration
	2.4 Project creation
	2.4.1 Starting the programming environment
	2.4.2 Creating new project

	2.5 Typical steps of project writing
	2.6 Examples of program writing and debugging
	2.6.1 Adding devices
	2.6.2 Writing a function to handle POU
	2.6.3 Setting motor parameters
	2.6.4 Writing motor positive and reverse
	2.6.5 Compiling user program
	2.6.6 Running monitor program

	3 Network Configuration
	3.1 ModbusTCP
	3.1.1 ModbusTCP_Master
	3.1.2 ModbusTCP_Slave

	3.2 ModbusRTU
	3.2.1 ModbusRTU_Master
	3.2.2 ModbusRTU_Slave

	3.3 EtherCAT master node
	3.4 CANopen
	3.4.1 CANopen master node configuration
	3.4.1.1 Master node usage process
	3.4.1.2 Adding CANopen management device
	3.4.1.3 Adding CANopen slave node

	3.4.2 Parameter configuration of CANopen master

	4 Module Configuration
	4.1 CPU module
	4.2 High-speed I/O module
	4.2.1 Creating high-speed I/O module project
	4.2.1.1 P-type model port configuration description
	4.2.1.2 N-type model port configuration description

	4.2.2 Input port function description
	4.2.2.1 Common input function
	4.2.2.2 Counting function
	4.2.2.3 Trigger, latch and Z-signal function
	4.2.2.4 Positive and negative limit zero function
	4.2.2.5 Pulse width measurement function

	4.2.3 Output port function description
	4.2.3.1 Common output function
	4.2.3.2 High-speed pulse output function
	4.2.3.3 Output comparison function

	4.2.4 High-speed I/O mapping table
	4.2.4.1 General input value
	4.2.4.2 Version
	4.2.4.3 Input terminal function configuration
	4.2.4.4 Counting mode configuration
	4.2.4.5 Filter parameters
	4.2.4.6 Output terminal function configuration
	4.2.4.7 Common output value
	4.2.4.8 High-speed pulse output function
	4.2.4.9 Global interrupt enable
	4.2.4.10 Interrupt enable
	4.2.4.11 Interrupt mode

	4.2.5 Interrupt instruction
	4.2.5.1 External interrupt instruction
	4.2.5.2 Probe interrupt instruction
	4.2.5.3 Comparison interrupt instruction

	4.3 Digital input/output module
	4.3.1 Creating a project for digital input/output module
	4.3.2 Variable definition and use

	4.4 Analog input/output module
	4.4.1 Creating a project for analog input/output module
	4.4.2 Variable definition and use

	4.5 Temperature module
	4.5.1 Creating a project for temperature module
	4.5.2 Variable definition and use

	4.6 Communication module
	4.6.1 Digital input module
	4.6.2 Digital output module
	4.6.3 Analog input module
	4.6.4 Analog output module
	4.6.5 Temperature module

	4.7 Distributed I/O module
	4.7.1 Creating a project for distributed I/O module

	4.8 Priority setting of each module (recommended value)
	4.8.1 Setting priority
	4.8.2 Configuring sub-device bus cycle options

	5 Device Diagnosis
	5.1 Fault indicator
	5.1.1 System and bus fault indicator
	5.1.2 High-speed input/output indicator

	5.2 Digital tube fault code

	6 Controller Program Structure and Execution
	6.1 Program structure
	6.2 Task
	6.3 Program execution
	6.4 Task execution type
	6.5 Task priority
	6.6 Operation of multiple subprograms

	7 EtherCAT Bus Motion Control
	7.1 EtherCAT operation principle
	7.1.1 Protocol introduction
	7.1.2 Work counter WKC
	7.1.3 Addressing mode
	7.1.3.1 Segment addressing
	7.1.3.2 Device addressing

	7.1.4 Distributed clocks
	7.1.4.1 Concepts
	7.1.4.2 Clock synchronization process

	7.1.5 EtherCAT cable redundancy

	7.2 EtherCAT communication mode
	7.2.1 Periodic process data communication
	7.2.2 Non-periodic mailbox data communication

	7.3 EtherCAT state machine
	7.4 EtherCAT servo drive controller application protocol
	7.4.1 EtherCAT-based CAN application protocol (CoE)
	7.4.1.1 CoE object dictionary
	7.4.1.2 CoE periodic process data communication (PDO)
	7.4.1.3 CoE non-periodic process data communication (SDO)

	7.4.2 Servo drive profile according to IEC 61800-7-204 (SERCOS)
	7.4.2.1 SoE state machine
	7.4.2.2 IDN inheritance
	7.4.2.3 SoE periodic process data
	7.4.2.4 SoE non-periodic service channels

	8 Application Programming
	8.1 Single axis control
	8.1.1 Single axis control programming description
	8.1.2 MC function blocks commonly used for single-axis control

	8.2 Cam synchronization control
	8.2.1 Periodic mode of the cam table
	8.2.2 Input method of cam table
	8.2.3 Data structure of cam table
	8.2.4 CAM table reference and switch

	Appendix A Function module command
	A.1 ModbusRTU command library
	A.1.1 Definition and use of ModbusRTU master command library variables
	A.1.1.1 Variable definition
	A.1.1.2 How to use

	A.1.2 Definition and use of ModbusRTU slave library variables
	A.1.2.1 Variable definition
	A.1.2.2 How to use

	A.2 ModbusTCP command library
	A.2.1 Definition and use of ModbusTCP master command library variables
	A.2.1.1 Variable definition
	A.2.1.2 How to use

	A.2.2 Definition and use of ModbusTCP slave command library variables
	A.2.2.1 Variable definition
	A.2.2.2 How to use

	A.3 High-speed I/O library description
	A.3.1 Counter_HP
	A.3.1.1 Single pulse counting
	A.3.1.2 Quadrature encoder pulses
	A.3.1.3 Timing counting
	A.3.1.4 Pulse + direction counting

	A.3.2 LatchValue_HP
	A.3.2.1 Function configuration
	A.3.2.2 Time sequence description

	A.3.3 PresetValue_HP
	A.3.3.1 Function configuration
	A.3.3.2 Time sequence description

	A.3.4 PulsewidthMeasure_HP
	A.3.4.1 Function configuration
	A.3.4.2 Time sequence description

	A.3.5 SetCompareInterruptParam_HP
	A.3.5.1 Function configuration

	A.3.6 TimingSampling_HP
	A.3.6.1 Function configuration
	A.3.6.2 Time sequence description

	A.3.7 CompareSingleValue_HP
	A.3.7.1 Function configuration
	A.3.7.2 Time sequence description

	A.3.8 CompareMoreValue_HP
	A.3.8.1 Function configuration
	A.3.8.2 Time sequence description

	A.3.9 GetVersion_HP
	A.3.10 Zphase_Clearpulse_HP
	A.3.10.1 Function configuration
	A.3.10.2 Time sequence description

	A.3.11 Zphase_Compensate_HP
	A.3.11.1 Function configuration
	A.3.11.2 Time sequence description

	Appendix B Project Instance
	B.1 Controller and Goodrive20 Series VFD Configuration Example
	B.2 Controller and DA200 Series Servo Drive Configuration Example
	B.3 Controller and DA200 Series Servo CANopen Configuration Example

	Appendix C SMC_ERROR description

